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Abstract

In the space of real and continuous functions on the interval [0, 1], we establish
the existence of nondecreasing solutions to a cubic Urysohn integral equation with
linear modification of the argument. To achieve our goal, we use the concept of a
measure of noncompactness related to monotonicity which introduced by J. Banaś
and L. Olszowy, and Darbo’s fixed point theorem.
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1 Introduction
Integral equations are encountered in a variety of applications in many disciplines of en-
gineering and sciences applications. Several real world phenomena in different areas of
science for example mechanics, physics, biology, electricity, etc. are studied and mod-
eled with nonlinear integral equations. Therefore, the study of existence of solutions to
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nonlinear integral equations is an essential area of scientific inquiry [8, 11, 17]. On the
other hand, the study of differential and integral equations with a modified argument is
arise in the modeling of many problems from the natural and social sciences such as
biology, physics and economics, see [1, 4–6, 10, 12–16] and references therein.

In this paper, we will study the cubic integral equation of Urysohn type with linear
modification of the argument

x(t) = f(t, x(t)) + x2(t)

∫ 1

0

u(t, s, x(s), x(λs)) ds, (1.1)

where t ∈ I = [0, 1] and 0 < λ < 1.
We establish the existence of solutions of Eq.(1.1) in the space of real functions, de-

fined and continuous on a bounded interval. Our proof depends on suitable combination
of the technique of measures of noncompactness and the Darbo fixed point principle.
Mainely, our result extend the result obtained by J. Caballero et al [7]. It is worthwhile
mentioning that up to now the work of J. Caballero et al [7] is the only paper concerning
with the study of cubic integral equation of Urysohn type in the space of real functions,
defined and continuous on a bounded interval.

2 Auxiliary Facts and Results
First, let us denote by (E, ‖·‖) a real Banach space with a zero element 0 and we denote
by B(x, r) the closed ball of radius r and center x. Also, we denote by Br the closed
ball B(0, r). Second, let X 6= ∅ be a subset of E and denote by X and ConvX the
closure and convex closure of the set X , respectively. Let X + Y and λX , λ ∈ R,
denote the usual algebraic operations on X and Y . Moreover, let the symbol ME stands
for the family of all nonempty and bounded subsets of E and let the symbol NE stands
for the subfamily of ME consisting of all relatively compact subsets of E.

Now, we state the definition a measure of noncompactness [2].

Definition 2.1. A function µ : ME → R+ = [0,∞) is called a measure of noncom-
pactness in E if the following conditions is verified.

1◦ ∅ 6= kerµ ⊂ NE , where kerµ = {X ∈ME : µ(X) = 0} stands for the kernel of
a measure of noncompactness µ.

2◦ X ⊂ Y ⇒ µ(X) ≤ µ(Y ) ∀X, Y ∈ME .

3◦ µ(X) = µ(X) = µ(ConvX).

4◦ µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) ∀X, Y ∈ME; λ ∈ [0, 1].

5◦ If (Xn) is a sequence of closed subsets of ME such that lim
n→∞

µ(Xn) = 0 and

Xn+1 ⊂ Xn then X∞ = ∩∞n=1Xn 6= ∅.
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Further, we denote by C(I) the Banach space consisting of all real functions de-
fined and continuous on I = [0, 1], which is furnished with the standard norm ‖x‖ =
max{|x(t)| : x ∈ I}, x ∈ C(I).

In the following, we define the measure of noncompactness inC(I), which will used
throughout this paper [3]. Let us fix ∅ 6= X ⊂ C(I) be bounded. For x ∈ X and ε ≥ 0
let the symbol ω(x, ε) stands for the modulus of continuity of the function x, i.e.,

ω(x, ε) = sup{|x(t)− x(s)| : t, s ∈ I, |t− s| ≤ ε}.

Further, let us put
ω(X, ε) = sup

x∈X
ω(x, ε)

and
ω0(X) = lim

ε→0
ω(X, ε).

Now, let us define the quantities

sup{|x(t)− x(s)| − (x(t)− x(s)) : t, s ∈ I, s ≤ t}

and
i(X) = sup

x∈X
i(x).

Notice that i(X) = 0 if and only if all functions belonging to X are nondecreasing on
I .

Next, let
µ(X) = ω0(X) + i(X).

In [3], Banaś and Olszowy proved that the function µ is a measure of noncompactness
in the space C(I). Moreover, the kernel kerµ consists of all subsets X of the set MC(I)

such that all functions from X are nondecreasing and equicontinuous on I .
Finally, in [9], Darbo proved the following theorem.

Theorem 2.2. Let Ω be a nonempty, bounded, closed and convex subset of E and let
H : Ω → Ω be a continuous mapping such that there exists a constant k ∈ [0, 1)
satisfying

µ(HX) ≤ kµ(X),

for any nonempty subset X of Ω, where µ is a measure of noncompactness. ThenH has
a fixed point in the Ω.

Notice that under the assumptions of the above theorem the set FixH of all fixed
points ofH belonging to Ω belongs to the set kerµ [2].
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3 Existence Theorem
In this section, we investigate Eq.(1.1) under the following assumptions.

(A1) The function f : I × R → R is continuous and f : I × R+ → R+. Moreover,
there exists a nonnegative constant c such that

|f(t, y)− f(t, x)| ≤ c|y − x| ∀(t, x, y) ∈ I × R2.

(A2) The superposition operator F satisfies for any nonnegative function x the condi-
tion i(Fx) ≤ ci(x), where c is the same constant as in (A1).

(A3) The function u : I2 × R2 → ×R is a continuous and u : I2 × R2
+ → R+.

Moreover, for arbitrary fixed (s, x, y) ∈ I × R2
+ the function t → u(t, s, x, y) is

nondecreasing on I .

(A4) There exists a continuous nondecreasing function φ : R+ × R+ → R+ such that

|u(t, s, x, y)| ≤ φ(|x|, |y|) ∀ (t, s, x, y) ∈ I2 × R2.

(A5) There exists r0 such that

cr0 + f ∗ + r20φ(r0, r0) ≤ r0

and
c+ 2r0φ(r0, r0) < 1,

where f ∗ = max
0≤t≤1

|f(t, 0)|.

Now, we can state and prove our main result in this paper.

Theorem 3.1. Let the assumptions (A1) − (A5) be verified. Then Eq.(1.1) has at least
one solution x ∈ C(I) and is nondecreasing on I .

Proof. Let us consider the two operators U and V defined on the space C(I) as follows

(Vx)(t) = f(t, x(t)) + x2(t)

∫ 1

0

u(t, s, x(s), x(λs)) ds

and

(Ux)(t) =

∫ 1

0

u(t, s, x(s), x(λs)) ds.

For better readability, we divide our proof into several steps.
Step 1. We shall prove that if x ∈ C(I) then Vx ∈ C(I).

For this we have just to prove that if x ∈ C(I) then Ux ∈ C(I). x ∈ C(I) then
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Ux ∈ C(I), thanks (a1) and (a2). Fix ε > 0 and let x ∈ C(I) and (t1, t2) ∈ I2 with
t2 ≥ t1 and t2 − t1 ≤ ε. Then, we obtain

|(Ux)(t2)− (Ux)(t1)|

=

∣∣∣∣∫ 1

0

u(t2, s, x(s), x(λs)) ds−
∫ 1

0

u(t1, s, x(s), x(λs)) ds

∣∣∣∣
≤
∫ 1

0

|u(t2, s, x(s), x(λs))− u(t1, s, x(s), x(λs))| ds

≤
∫ 1

0

ωu(ε, ·, ‖x‖, ‖x‖) ds

= ωu(ε, ·, ‖x‖, ‖x‖),

where ωu(ε, ·, ‖x‖, ‖x‖) stands for

sup{|u(t, s, x, y)− u(τ, s, x, y)| : (t, τ, s) ∈ I3, |t− τ | ≤ ε, (x, y) ∈ [−‖x‖, ‖x‖]2}.

Since the function u is uniformly continuous on I2 × [−‖x‖, ‖x‖]2 then as ε → 0, we
have ωu(ε, ·, ‖x‖, ‖x‖)→ 0 and, consequently, Ux ∈ C(I).

Step 2. We shall prove that V is continuous on C(I).
To do this, let us fix ε > 0 and take x ∈ C(I). Let L = ‖x‖ + ε and take a function
y ∈ C(I) with ‖y − x‖ ≤ ε. Then, for each t ∈ I we have

|(Vy)(t)− (Vx)(t)|

=

∣∣∣∣f(t, y(t)) + y2(t)

∫ 1

0

u(t, s, y(s), y(λs))ds

−f(t, x(t))− x2(t)
∫ 1

0

u(t, s, x(s), x(λs)) ds

∣∣∣∣
≤ c|y(t)− x(t)|

+

∣∣∣∣y2(t)∫ 1

0

u(t, s, y(s), y(λs))ds− x2(t)
∫ 1

0

u(t, s, y(s), y(λs)) ds

∣∣∣∣
+

∣∣∣∣x2(t)∫ 1

0

u(t, s, y(s), y(λs))ds− x2(t)
∫ 1

0

u(t, s, x(s), x(λs)) ds

∣∣∣∣
≤ c|y(t)− x(t)|+

∣∣y2(t)− x2(t)∣∣ ∫ 1

0

|u(t, s, y(s), y(λs))| ds

+|x2(t)|
∫ 1

0

|u(t, s, y(s), y(λs))− u(t, s, x(s), x(λs))|ds

≤ c‖y − x‖+ |y(t)− x(t)| |y(t) + x(t)|
∫ 1

0

φ(|y(s)|, |y(λs)|) ds

+‖x‖2
∫ 1

0

βu(ε) ds
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≤ c‖y − x‖+ 2‖y − x‖(‖y‖+ ε)φ(‖x‖, ‖x‖) + ‖x‖2βu(ε),

where

βu(ε) = sup{|u(t, s, x2, y2)− u(t, s, x1, y1)| : t, s ∈ I, x1, x2, y1, y2 ∈ [−L,L],

|x2 − x1| ≤ ε and |y2 − y1| ≤ ε}.

From the previous estimate we infer that

‖(Vy)− (Vx)‖ ≤ cε+ 2ε(‖y‖+ ε)φ(‖x‖, ‖x‖) + ‖x‖2βu(ε).

By the uniform continuity of the function u on I2 × [−L,L]2 we have that βu(ε) → 0
as ε→ 0. Thus V is continuous on C(I).

Step 3. V transforms the ball Br0 into itself.
For each t ∈ I we have

|(Vx)(t)| =

∣∣∣∣f(t, x(t)) + x2(t)

∫ 1

0

u(t, s, x(s), x(λs)) ds

∣∣∣∣
≤ |f(t, x(t))− f(t, 0)|+ |f(t, 0)|+ ‖x‖2

∫ 1

0

|u(t, s, x(s), x(λs))| ds

≤ c‖x‖+ f ∗ + ‖x‖2φ(‖x‖, ‖x‖).

Hence
‖Vx‖ ≤ c‖x‖+ f ∗ + ‖x‖2φ(‖x‖, ‖x‖).

Thus, if ‖x‖ ≤ r0 from assumption (A5) we deduce that

‖Vx‖ ≤ cr0 + f ∗ + r20φ(r0, r0) ≤ r0

and, consequently, the operator V maps Br0 into itself.
Step 4. V transforms the ball B+

r0
into itself and is continuous.

Here, we consider the operator V on the set B+
r0

defined by

Br0 ⊃ B+
r0

= {x ∈ Br0 : x(t) ≥ 0, for t ∈ I}.

It is obvious that the set B+
r0

is nonempty, bounded, closed and convex. Notice that in
view of this facts and our assumptions (A1), (A2) and (A3), we infer that if x(t) ≥ 0
for t ∈ I then (Vx)(t) ≥ 0 for t ∈ I . Therefore, V maps the set B+

r0
into itself and is

continuous.
Step 5. An estimate of V with respect to ω0 in B+

r0
.

We take ∅ 6= X ⊂ B+
r0

and x ∈ X . Then, for a fixed ε > 0 and (t1, t2) ∈ I2 such that
t2 ≥ t1 and |t2 − t1| ≤ ε, we get

|(Vx)(t2)− (Vx)(t1)|
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≤ |f(t2, x(t2))− f(t1, x(t1))|+
∣∣x2(t2)(Ux)(t2)− x2(t2)(Ux)(t1)

∣∣
+
∣∣x2(t2)(Ux)(t1)− x2(t1)(Ux)(t1)

∣∣
≤ |f(t2, x(t2))− f(t1, x(t2))|+ |f(t1, x(t2))− f(t1, x(t1))|

+|x2(t2)| |(Ux)(t2)− (Ux)(t1)|+ |x2(t2)− x2(t1)| |(Ux)(t1)|
≤ γr0(f, ε) + cω(x, ε) + ‖x‖2ωu(ε, ·, r0, r0) + 2ω(ε, x)‖x‖φ(‖x‖, ‖x‖),

where

γr0(f, ε) = sup{|f(t2, x)− f(t1, x)| : (t1, t2) ∈ I2, x ∈ [0, r0], |t2 − t1| ≤ ε}

and

ωu(ε, ·, r0, r0) = sup
{
|u(t2, s, x, y)− f(t1, s, x, y)| : (t1, t2, s) ∈ I3,

(x, y) ∈ [0, r0]
2, |t2 − t1| ≤ ε

}
.

Therefore,

ω(Vx, ε) ≤ γr0(f, ε) + cω(x, ε) + r20ωu(ε, ·, r0, r0) + 2ω(ε, x)r0φ(r0, r0),

and consequently

ω(VX, ε) ≤ γr0(f, ε) + cω(X, ε) + r20ωu(ε, ·, r0, r0) + 2ω(ε,X)r0φ(r0, r0).

Taking into account the uniform continuity of the function f on the set I × [0, r0] and
the uniform continuity of the function u on I2 × [0, r0]

2, the last inequality implies

ω0(VX) ≤ (c+ 2r0φ(r0, r0))ω0(X). (3.1)

Step 6. An estimate of V with respect to i in B+
r0

.
We fix x ∈ X and t1, t2 ∈ I with t2 ≥ t1. Then, we have

|(Vx)(t2)− (Vx)(t1)| − ((Vx)(t2)− (Vx)(t1))

≤ |f(t2, x(t2))− f(t1, x(t1))| − (f(t2, x(t2))− f(t1, x(t1)))

+
∣∣x2(t2)(Ux)(t2)− x2(t1)(Ux)(t2)

∣∣+
∣∣x2(t1)(Ux)(t2)− x2(t1)(Ux)(t1)

∣∣
−
(
x2(t2)(Ux)(t2)− x2(t1)(Ux)(t2)

)
−
(
x2(t1)(Ux)(t2)− x2(t1)(Ux)(t1)

)
≤ i(Fx) +

[
|x2(t2)− x2(t1)| −

(
x2(t2)− x2(t1)

)] ∫ 1

0

u(t2, s, x(s), x(λ(s))) ds

+|x2(t1)|
∫ 1

0

|u(t2, s, x(s), x(λs))− u(t1, s, x(s), x(λs))| ds

−x2(t1)
∫ 1

0

(u(t2, s, x(s), x(λs))− u(t1, s, x(s), x(λs))) ds

≤ i(Fx) + [|x(t2)− x(t1)| |x(t2) + x(t1)| − (x(t2)− x(t1)) (x(t2) + x(t1))]
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×
∫ 1

0

φ(|x(s)|, |x(λs)|) ds

≤ i(Fx) + [|x(t2)− x(t1)| − (x(t2)− x(t1))] (x(t2) + x(t1))φ(‖x‖, ‖x‖)
≤ i(Fx) + 2‖x‖φ(‖x‖, ‖x‖)i(x)

≤ i(Fx) + 2r0φ(r0, r0)i(x).

Therefore,
i(Vx) ≤ ci(x) + 2r0φ(r0, r0)i(x)

and consequently,
i(VX) ≤ (c+ 2r0φ(r0, r0))i(X). (3.2)

Step 7. V is contraction with respect to the measure of noncompactness µ.
From (3.1) and (3.2), we obtain

µ(VX) ≤ (c+ 2r0φ(r0, r0))µ(X).

The above obtained inequality together with the fact that c + 2r0φ(r0, r0) < 1 allow us
to apply Theorem 2.2. Therefore Eq.(1.1) has at least one solution x ∈ C(I) which is
nondecreasing on I . This completes the proof.
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