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Abstract

In this paper, we consider a planar discrete system with some negative coef-
ficients, then investigate its positive solutions. We characterize boundedness and
persistence of the system. Under certain conditions on the parameters, we show
that the system undergoes a Neimark–Sacker bifurcation and the obtained invariant
curve is supercritical.
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1 Introduction
Discrete-time systems of the form{

xn+1 = F (xn, yn)

yn+1 = G(xn, yn)

generate the dynamics obtained by iterating the planar maps F and G, which are widely
used throughout literature. The primary motivation for studying such systems stems from
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biological and ecological reasons since they provide a realistic approach toward modeling
the behaviour of species with nonoverlapping generations [2, 4, 7, 15]. In general, the
qualitative features of the maps F and G are determined by the nature of interaction
among and between the studied species. For instance, there are three main types of
interspecific interactions, namely predator-prey interaction, competition interaction and
the third is mutualism (or symbiosis). In a discrete-time predator-prey model [4, 16],
F and G satisfy F (↑, ↓) while G(↑, ↑), where we use ↑ to represent the nondecreasing
property while ↓ represents the nonincreasing property. A classical example of this type
is given by Nicholson–Baily model [4, 17] in which F (x, y) = λxf(x, y) = αxe−ay

and G(x, y) = βxg(x, y) = βx(1 − e−ay). In a discrete-time competition model, F
and G can be taken to satisfy F (↑, ↓) while G(↓, ↑) [10, 14, 18]. The Leslie–Gower
model [14] is a well-known prototype of this scenario in which F (x, y) = xf(x, y) =
αx/(1 + a11x + a12y) and G(x, y) = yf(x, y) = βy/(1 + a21x + a22y). Finally, in
mutualism both species benefit from the interaction [5, 6, 20]; however, modeling this
type of interaction is getting little attention in continuous models, and almost no attention
in discrete models. In discrete models of mutualism [6], F and G can be taken to satisfy
F (↑, ↑) while G(↑, ↑), and therefore, the dynamics of such systems can be simple. A
deviation from the aforementioned monotonic maps leads to considering maps F and G
that are monotonic for a restricted parameter set and on a subset of the state space. This
change in monotonicity leads to more complicated dynamics. A well-known model is
the discrete-time Lotka–Volterra competition model [9, 15]{

xn+1 = F (xn, yn) = xne
r(1−xn−byn)

yn+1 = G(xn, yn) = yne
s(1−cxn−yn).

(1.1)

Planar maps of this type have been given considerable attention by Smith [19]. Observe
that F in (1.1) changes monotonicity in its first variable while G changes monotonicity
in its second variable (i.e., F (y, ↓) and G(↓,y)); however, the positive quadrant is still
forming an obvious invariant domain. In this study, we add another factor of complexity
by considering planar maps F (y, ↓) and G(↑, ↑) that have no obvious invariant domain.
In particular, we consider the discrete-time systemxn+1 = F (xn, yn) =

rkxn
k + (r − 1)xn

− αxnyn

yn+1 = G(xn, yn) = βxnyn − µyn,
(1.2)

where the parameters k, α, β > 0 and r > 1. Although this system can be connected
to certain continuous predator-prey models, our interest here is limited to its abstract
dynamics, and in particular, the asymptotic behaviour of its positive solutions, which
contributes toward understanding the dynamics of discrete planar systems in general.

To reduce the number of parameters, we let xn =
k

r − 1
Xn and yn =

1

α
Yn, then define
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B̃ := βk and B :=
B̃

r − 1
. Thus, we obtain the system


Xn+1 = Xn

(
r

1 +Xn

− Yn
)

Yn+1 = Yn (BXn − µ) .

(1.3)

For our writing convenience, we ignore the upper case symbols and consider

f(x) =
r

1 + x
while g(x) = (Bx− µ)

to obtain the system {
xn+1 = F (xn, yn) = xn (f(xn)− yn)

yn+1 = G(xn, yn) = yng(xn),
(1.4)

where r > 1 and B, µ > 0.
This paper is organized as follows: In section two, we discuss the local stability

of equilibria. In section three, we eliminate xn and establish an invariant region with
respect to yn. Furthermore, we show the existence of periodic solutions. In section four,
we discuss the boundedness and persistence of solutions. A rigours analysis is done in
section five to prove the existence of Neimark–Sacker bifurcation.

2 Equilibrium Solutions and Local Stability
System (1.4) has a total of three equilibrium points, namelyE0 := (0, 0), E1 := (r−1, 0)
and

E∗ = (x̄1, ȳ1) =
(
g−1(1), f(g−1(1))− 1

)
=

(
1 + µ

B
,

Br

B + µ+ 1
− 1

)
.

We denote E0 and E1 as the boundary equilibria while E∗ as the interior or positive one.
The local stability of an equilibrium E = (x, y) can be determined by the eigenvalues λi,
i = 1, 2 of the following Jacobian matrix evaluated at an equilibrium.

J(x̄, ȳ) =

[
x̄f ′(x̄) + f(x̄)− ȳ −x̄

Bȳ g(x̄)

]
.

It is obvious that the boundary equilibria are not within the positive solutions that we
are interested in; however, we investigate their local stability to have full understanding
of the dynamics. Observe that we must have xn >

µ

B
for all n. Furthermore, if yn = 0,
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then xn stabilizes at the positive equilibrium of xn+1 =
rxn

1 + xn
, i.e., x̄ = r− 1. Now, the

boundary equilibrium E0 has the eigenvalues λ1 = r > 1 and λ2 = −µ < 0. Thus, E0 is
a saddle when 0 < µ < 1 and a repeller when µ > 1. On the other hand, the boundary

equilibrium E1 has the eigenvalues λ1 =
1

r
< 1 and λ2 = B(r− 1)− µ = B̃ − µ. Thus,

E1 is a saddle if |B̃ − µ| > 1 and is locally asymptotically stable if |B̃ − µ| < 1.
Next, we focus on the positive equilibrium E∗. Observe that to have ȳ1 > 0, we need

B̃ > µ+ 1. At E∗, the Jacobian matrix becomes

J(x̄1, ȳ1) =

[
x̄1f

′(x̄1) + 1 −x̄1
Bȳ1 1

]
.

To analyze the stability of E∗ = (x̄1, ȳ1) with some convenience, we define u = Bx̄1ȳ1

and v =
rx̄1

(1 + x̄1)2
.We obtainDet(J) = 1+u−v, Tr(J) = 2−v and the characteristic

equation
λ2 − (2− v)λ+ (1 + u− v) = 0.

Therefore, the eigenvalues are given by

λj =
1

2

(
2− v + (−1)j

√
v2 − 4u

)
, j = 1, 2. (2.1)

Our next lemma gives a characterization of the eigenvalues.

Lemma 2.1. Let u = Bx̄1ȳ1 and v =
rx̄1

(1 + x̄1)2
. The eigenvalues are both within the

unit circle if and only if (u, v) is within the triangle of vertices (0, 0), (0, 2) and (4, 4). If

v > 2 +
1

2
u, then |λ2| < 1 while |λ1| > 1.

Proof. The region in which both eigenvalues are within the unit circle can be obtained
from the Jury conditions

|Det(J)| < 1, 1− Tr(J) +Det(J) > 0 and 1 + Tr(J) +Det(J) > 0.

However, the expressions of λ1 and λ2 can be used and manipulated to conclude the
location of each eigenvalue. Fig 2.1 illustrates the computational details.

To know the impact of our original parameters in (1.4), we manipulate the regions
obtained in Lemma 2.1 and write them in terms of our original parameters. We start
by the case in which one of the eigenvalues is within the unit circle. The condition

v > 2 +
1

2
u translates into

B(µ+ 1)(µ+B − 1)r < (µ− 3)(B + µ+ 1)2. (2.2)
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Figure 2.1: This figure illustrates the effect of the (u, v) values on the eigenvalues of the
Jacobian matrix at (x̄1, ȳ1). The shaded R1-region gives both eigenvalues nonreal with
magnitude less than one, while the R2-region gives both eigenvalues real with magnitude
less than one. The line segment in blue between (0, 0) and (4, 4) is the place where both
eigenvalues are nonreal of magnitude one.

However, since B depends on r, we rather consider our parameters B̃, r and µ. In this
case, (2.2) becomes

P1(B̃) =

[
r + 3

(r − 1)
+ µ

]
B̃2+(1+µ)[4+(1−µ)(2−r)]B̃+(3−µ)(1+µ)2(r−1) < 0.

(2.3)
Now, we focus on our parameters to obtain both eigenvalues within the unit circle.
The triangular region obtained in Lemma 2.1, which is determined by 0 < u < 4 and

u < v < 2 +
1

2
u, translates into a region determined by the inequalities

B̃ > 1 + µ, (u > 0)

[µ(r − 1) + (r − 5)] B̃ < (µ+ 5)(µ+ 1)(r − 1), (u < 4)

B̃2 + (µr − 2µ− 2) B̃ < (r − 1)(µ+ 1)2, (u < v)

P1(B̃) > 0, (v < 2 +
1

2
u).

(2.4)

Notice that it is possible to solve the inequalities in (2.4) but the work is tedious; instead,
it can be more convenient to consider r and B̃ as our major parameters while µ as a
constant, then write r and B̃ in terms of u and v, i.e,

r =
(µ+ u+ 1)2

(µ+ 1)(u− (µ+ 1)(v − 1))
and B̃ =

(µ2v + µu+ 2µv + u2 + u+ v)

(µ+ 1)v
.
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To have r > 1, we need u > (µ+ 1)(v − 1), which means the shaded region of Fig. 2.1
is not completely utilized. However, the triangular region obtained in Lemma 2.1 can be
traced to obtain the stability region with respect to r and B̃. We summarize the obtained
results in the following Lemma.

Lemma 2.2. Each of the following holds true for (1.4):

(i) If the parameters B̃, r and µ satisfy (2.4), then (x̄1, ȳ1) is locally asymptotically
stable. Fig. 2.2 illustrates the stability region.

(ii) If the parameters B̃, r and µ satisfy (2.3), then (x̄1, ȳ1) is a saddle. Again, Fig. 2.2
illustrates the feasible region.

(iii) Both eigenvalues of the Jacobian matrix are nonreal of modulus one when

B̃1 := [r, B̃] =

[
(µ+ t+ 1)2

(µ+ 1)(1− µ(t− 1))
, µ+ 2 +

t

(µ+ 1)

]
,

where either 0 < t ≤ 4, µ <
1

3
which is illustrated by the blue solid-curve in

Fig. 2.2 (a), or 0 < t < 1 +
1

µ
, µ ≥ 1

3
which is illustrated again by the blue

solid-curve in Fig. 2.2 (b).

We give a numerical example, which together with Fig 2.2 illustrate the various cases
of Lemma 2.2.

Example 2.3. (i) Consider µ =
1

10
<

1

3
. We fix r and let B̃ change along a vertical

fiber in Fig. 2.2(a)

• Fix r = 20 :

B̃ = x̄1 ≈ ȳ1 ≈ λ1 ≈ λ2 ≈
12

10
17.417 0.086 0.075 0.898

3 6.967 1.510 −0.098− 0.676i −0.098 + 0.676i
6 3.483 3.461 −0.733− 0.897i −0.733 + 0.897i

• Fix r = 28 :

B̃ = x̄1 ≈ ȳ1 ≈ λ1 ≈ λ2 ≈
12

10
24.750 0.087 0.058 0.898

3 9.900 1.569 −0.167− 0.604i −0.167 + 0.604i
6 4.076 3.915 −0.957− 0.495i −0.957 + 0.495i
10 2.970 6.053 −2.188 −1.089
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• Fix r = 50 :

B̃ = x̄1 ≈ ȳ1 ≈ λ1 ≈ λ2 ≈
12

10
44.917 0.089 0.036 0.898

3 17.967 1.636 −0.249− 0.491i −0.249 + 0.491i
6 8.983 4.008 −2.071 −0.436
10 5.390 6.825 −4.140 -0.461

(ii) Consider µ =
2

5
>

1

3
. We fix r = 70 and let B̃ change along a vertical fiber in Fig.

2.2(b)

B̃ = x̄1 ≈ ȳ1 ≈ λ1 ≈ λ2 ≈
3

2
64.400 0.070 0.050 0.896

3 32.200 1.108 −0.022− 0.712i −0.022 + 0.712i
6 16.100 3.094 −0.927− 0.786i −0.927 + 0.786i
9 10.733 4.966 −2.431 −1.026
15 6.440 8.409 −5.265 −0.879
40 2.415 19.498 −11.271 −1.225

3 The yn Equation
In this section, we eliminate xn from our system and focus on the dynamics of yn. This
notion has the advantage of simplifying the mathematical analysis in finding an invariant
region. The second equation of (1.4) gives us

xn = g−1
(
yn+1

yn

)
, (3.1)

then we obtain from the first equation

g−1
(
yn+2

yn+1

)
= g−1

(
yn+1

yn

)(
f

(
g−1

(
yn+1

yn

))
− yn

)
.

We simplify to obtain

yn+2 = yn+1F (yn, yn+1), where F (x, y) =

(
rB − rB2x

(B + µ)x+ y
− y − µx− µ

)
(3.2)

and x, y > 0. We must have F (x, y) > 0, i.e.,

rB − µ > rB
Bx

(y + µx) +Bx
+ (y + µx). (3.3)
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Figure 2.2: The shaded regions in both figures show the solution of (2.3). Fig. (a) has

been captured at µ =
1

10
while Fig (b) at µ =

2

5
. The red curve is the transformation of

the line v = 2 +
1

2
u under the constraints of our parameters. The intersection between

the curves takes place when r =
(µ+ 5)2

(µ+ 1)(1− 3µ)
and µ <

1

3
. The blue solid curve in

the first quadrant represents u = v, which is the place where both eigenvalues are on the
unit circle. At the green curve, eigenvalues change from complex to real or vice versa.
The regions R1 ∪ R2 correspond to the shaded regions in Fig. 2.1. The region R3 gives
nonreal eigenvalues which are located out of the unit circle.

Also, it is obvious that a solution must oscillate about the curve F (x, y) = 1, i.e.,

rB − µ− 1 = rB
Bx

(y + µx) +Bx
+ (y + µx). (3.4)

We illustrate (3.3) and (3.4) in Figure 3.1.
Denote the region in the positive quadrant that satisfies F (x, y) > 0 (the axes are

not included) by R, and consider the two-dimensional map T : (yn−1, yn)→ (yn, yn+1).
In general, and as Fig 3.1 illustrates, The region R is not invariant under T . However,
we are interested in establishing an invariant region that can be used to ensure positive
solutions in our original system. We start by forcing the first obvious constraint

α := Br − µ < Br

B + µ
− 1 =: β. (3.5)

Consider D to be the interior of the triangular region of vertices (0, 0), (β, 0) and
(0, α). It is a simple computation to show that the upper boundary of this region satisfies



Persistence and Bifurcation in a Discrete System 71

5

10

15

20

25
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R

Figure 3.1: This figure illustrates the curve F (x, y) = 1 and the region given by
F (x, y) > 0. The grid unit is taken to be 5 and the parameters’ values are taken

µ =
1

10
, r = 51 and B̃ = 5.

F (x, y) ≥ 0. Hence, we have D ⊂ R. Now, we give the following result in the next
lemma.

Lemma 3.1. Consider α = Br−µ and β =
Br

B + µ
− 1, and assume that B̃ > 1 +µ. If

α(β + 1)2 < 4β2, then the region D is invariant under the map T defined by T (x, y) =
(y, yF (x, y)).

Proof. The condition B̃ > 1 + µ ensures that ȳ1 > 0, and consequently α, β > 0. Also,
note that the condition α(β + 1)2 < 4β2 is stronger than the condition of Inequality 3.
Now, let (s, t) ∈ D. We have

0 < s < β and 0 < t <
α

β
(β − s) .

Since T (s, t) = (t, tF (s, t)), all we need is to show that

tF (s, t) <
α

β
(β − t) .

However, since F is decreasing in its first argument, i.e., F (s, t) < F (0, t), it is sufficient
to show that

tF (0, t) = t(α− t) < α

β
(β − t) .

This is equivalent to βt2 − α(β + 1)t + αβ > 0, which is valid due to the condition
α(β + 1)2 < 4β2.
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It is worth mentioning that we obtained an invariant region in Lemma 3.1 using
relatively simple constraints on the parameters. However, it is possible to expand the
region D, but that will be on the expense of the constraints. Next, we explore the
condition α(β + 1)2 < 4β2, which is in fact

B̃3r3 − (r − 1)(µr2 + 4r2 − 8r + 4)B̃2 + 8µ(r − 1)3B̃ − 4µ2(r − 1)3 < 0.

The asymptotic behavior for large r is given by

B̃3 + (−µ− 4)B̃2 + 8B̃µ− 4µ2 = (B̃ − µ)(B̃2 − 4B̃ + 4µ).

In Fig 3.2, we plot the region on the parameter space that satisfies the constraints in
Lemma 3.1.

2 4 6 8 10 12 14 16

1

2

3

4

5

α(β + 1)2 = 4β
2

r

B̃ = 1 + µ

B̃

Figure 3.2: The shaded region in this figure illustrates the region that satisfies the

constraints of Lemma 3.1. This figure has been captured at µ =
1

10
.

Example 3.2. Equation (3.2) is capable of having persistent periodic solutions. For

instance, if we fix µ =
1

10
, r = 51 and B̃ = 5, then we obtain the 2− periodic solution

{y0, y1}, where

xj =

{
1

1960

(
5275 +

√
765865− (−1)j

√
19090990− 19750

√
765865

)}
,

for j = 0, 1, which can be rounded to {y0, y1} = {2.452, 3.824}. Another approximate
case is when we fix µ = 0.100, r = 9.942 and B̃ = 3.999. We obtain a 4 − periodic
solution, namely

[y0, y1, y2, y3] ≈ [2.928, 1.144, 0.903, 1.663].
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4 Persistence and Boundedness
Persistence is a convenient biological term that can be used to replace our usage of
positive solutions, i.e., a solution {(xn, yn)}∞n=0 of (1.4) is called persistent if xn, yn > 0
for all n = 0, 1, . . . . The solution is called strongly persistent or permanent if xn, yn >
δ > 0 for all n = 0, 1, . . . . Recall that when yn = 0, we obtain

xn+1 =
krxn

k + (r − 1)xn
, (4.1)

which is in fact the Beverton–Holt model [1, 3]. The positive equilibrium x̄ = k is a
global attractor with respect to the interval (0,∞). Thus, in this case, xn is permanent and
bounded, while the persistent set is unbounded. We start by showing the boundedness of
persistent solutions. From the first equation of (1.4), we obtain

xn+1 ≤
rxn

1 + xn
< r for all n ≥ 0.

Now, from the second equation xn must be larger than
µ

B
, and from the first equation yn

must be less than f(xn). Thus,

yn ≤ f(xn) ≤ f
( µ
B

)
for all n ≥ 0.

Thus, persistent solutions of (1.4) are bounded. We can strengthen this fact as follows.

Proposition 4.1. Let {(xn, yn)} be a persistent solution of (1.4). We have lim supxn ≤
r − 1 and lim sup yn ≤ B̃ − µ.

Proof. From the first equation of (1.4), we obtain

xn+1 ≤
rxn

1 + xn
,

and from which we obtain lim supxn less than or equal to the fixed point of f(x), i.e.,
lim supxn ≤ r − 1. Next, yn must be less than f(xn), then yn+1 ≤ f(xn)g(xn), and
because f(t)g(t) is increasing, then

lim sup yn = lim sup yn+1

≤ lim sup f(xn)g(xn)

≤f(lim supxn)g(lim supxn)

=B̃ − µ.
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xn

yn

y = f(x)
y = f(x)− 1

g
(x

)
=

1

g
(x

)
=

0

µ

B
x̄1 r − 1

ȳ1

ȳ1 + 1

rB

µ+B

Figure 4.1: The shaded region in this figure illustrates the set of initial points that need
to be investigated for possible coexistence. The curve y = f(x) − 1 is the nullcline
(or isocline) of the prey equation while the vertical line g(x) = 1 is the nullcline of the
predator equation.

Theorem 4.2. No persistent solutions exist without the existence of a positive equilibrium,
i.e., if B̃ ≤ µ+ 1, then yn → 0 for sufficiently large n.

Proof. Consider B̃ ≤ µ + 1, and assume by contrary that there exists a permanent
solution {(xn, yn)}. If xn ≤ r − 1 for some n = n0, then we use induction to obtain

xn+1 = xn(f(xn)− yn) < xnf(xn) < r − 1 for all n ≥ n0.

Now, we use this fact in the second equation to obtain

yn+1 < yng(r − 1) = yn(B(r − 1)− µ) ≤ yn.

Thus, we obtained a decreasing and bounded sequence {yn}, which must converge to
either ȳ0 or ȳ1. This contradicts our earlier assumption. Next, we show that xn cannot

stay above r − 1. If xn stays above r − 1, then because r − 1 <
µ+ 1

B
, we obtain

f(xn)− yn < 1, and consequently xn is decreasing. Thus, xn must converge to a fixed
point, which again leads to a contradiction.

Corollary 4.3. Suppose that ȳ1 > 0. Either xn ≤ r − 1 for all n ≥ n0 or yn is attracted
to ȳ1.
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Proof. As in the proof of Theorem 4.2, if xn0 ≤ r− 1 for some n0 > 0, then xn ≤ r− 1
for all n ≥ n0. Next, if xn stays above r − 1, then

yn+1 > yng(r − 1) > yn.

Thus, yn is increasing and bounded, and consequently must converge to ȳ1, which
completes the proof.

We have shown in Fig. 2.2(a) and Example 2.3 that when

µ <
1

3
, r >

(µ+ 5)2

(µ+ 1)(1− 3µ)

and as we increase B̃, the coexistence equilibrium (x̄1, ȳ1) loses its stability to become a
saddle. This scenario also leads to the existence of periodic solutions. We illustrate this
scenario in the following example and the numerical simulations in Fig 4.2.

Example 4.4. The periodic solution of period two obtained in Example 3.2 gives a
persistent solution of period two, namely {(x0, y0), (x1, y1)}, where y0, y1 as given in
Example 3.2 and

xj =
1

40

(
−395 +

√
765865− (−1)j

√
795090− 870

√
765865

)
, j = 0, 1.

A rounded form of this periodic solution is {(2.452, 7.413), (3.824, 16.594)}.

Next, we focus on the bifurcation that occurs at the upper boundary of the shaded

region in Fig. 2.2(a) when r >
(µ+ 5)2

(µ+ 1)(1− 3µ)
. This curve is a part of the branch

obtained by 4 + u = 2v. The curve can be written in parametric form as B̃2 :=

[r, B̃] =

[
2(t+ 1 + µ)2

(µ+ 1)((1− µ)t− 2(µ+ 1))
,
2t2 + (µ+ 1)(µ+ 3)t+ 4(µ+ 1)2

(µ+ 1)(t+ 4)

]
, (4.2)

where
2(µ+ 1)

1− µ
< t ≤ 4 and 0 < µ <

1

3
. Fig 4.2 shows a simulation along a curve taken

slightly above this curve. The stability of the equilibrium is inherited by a cycle of length
two.
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(a) The prey population xn (b) The predator population yn

Figure 4.2: In this figure, µ = 0.1, r and B̃ are taken along a curve slightly above
(+0.1) the curve B̃2 in (4.2). Observe that t is ranging over a domain that reverses and
compactifies the domain of r.

5 Neimark–Sacker Bifurcation
In this section, we consider our bifurcation parameter to be B̃ and focus on the positive
equilibrium when the two eigenvalues (λ and λ) of the Jacobian are nonreal and located
on the unit circle. From Lemma 2.1, we need v = u, 0 < u < 4, and from Part (iii) of
Lemma 2.2, we obtained a parametric form of r and B̃. In particular, we need to focus
on the blue solid curve given in Fig. 2.2 (a) and (b), which is given by B̃1 in Part (iii) of
Lemma 2.2. Note that we can eliminate t and write B̃2+(µr−2µ−2)B̃−(µ+1)2(r−1) =
0, where 0 < t < 4 implies r > 1 and (µ+ 1)(3µ− 1)r + (µ+ 5)2 > 0. Observe that
by considering r and B̃ along the curve B̃1, we already avoided λ = 1 and λ2 = 1. In
this case, the eigenvalue λ := λ2 is given by

λ = λB̃1
:= p+

√
1− p2 i, where p =

1

2
(2−Bx̄1ȳ1) . (5.1)

To avoid λ3 = 1 and λ4 = 1, we need

Bx̄1ȳ1 6= 3 and Bx̄1ȳ1 6= 2, consecutively. (5.2)

Those conditions simplify to

(µ+ 1)(1− 2µ)r 6= (µ+ 4)2 and (1− µ2)r 6= (µ+ 3)2.
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Up to this end, we tested the nonhyperbolicity and the nonstrong-resonance conditions.
To test the transversality condition of the Naimark–Sacker bifurcation, we need to show
that

d

dB̃

∣∣∣λ(B̃)
∣∣∣ 6= 0 at B̃ = B̃1.

Indeed, we have

d

dB̃

∣∣∣λ(B̃)
∣∣∣2 =2

∣∣∣λ(B̃)
∣∣∣ d

dB̃

∣∣∣λ(B̃)
∣∣∣

=
d

dB̃
Det(J(x̄1, ȳ1))

=
d

dx̄1
Det

(
J

(
x̄1,

r

1 + x̄1
− 1

))
dx̄1

dB̃

=

(
−r(2 + µ+ µx̄1)

(1 + x̄1)3

)(
−(µ+ 1)(r − 1)

B̃2

)
> 0.

We summarize our discussion in the following result then give the main result of this
section.

Lemma 5.1. Consider

[r, B̃] =

[
(µ+ t+ 1)2

(µ+ 1)(1− µ(t− 1))
, µ+ 2 +

t

(µ+ 1)

]
, 0 < t < 4.

If (µ + 1)(1− 2µ)r 6= (µ + 4)2 and (1− µ2)r 6= (µ + 3)2, then λk 6= 1 for k = 1, 2, 3
and 4. Furthermore,

d

dB̃

∣∣∣λ(B̃)
∣∣∣ 6= 0 at B̃ = B̃1.

Theorem 5.2. Consider (1.4) together with the hypotheses of Lemma 5.1. A Neimark–
Sacker bifurcation occurs and the obtained invariant curve is supercritical.

Proof. Based on Lemma 5.1, all we need is to show that the bifurcation is supercritical
(cf. [8,13]). Denote F̃ (x, y) = x(f(x)− y) and G̃(x) = yg(x). We shift the equilibrium
(x̄1, ȳ1) to the origin by taking the substitution u = x − x̄1 and v = y − ȳ1. The (u, v)
system becomes {

un+1 = (un + x̄1) (f(un + x̄1)− vn − ȳ1)− x̄1
vn+1 = (vn + ȳ1)g(un + x̄1)− ȳ1.

(5.3)

Now, use Taylor expansion about (0, 0) to obtain[
un+1

vn+1

]
= J(x̄1, ȳ1)

[
un
vn

]
+

[
F (un, vn)
G(un, vn)

]
,
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where

F (u, v) =
−r

(x̄1 + 1)3
u2 − uv +

r

(x̄1 + 1)4
u3 − r

(x̄1 + 1)

∞∑
j=4

(−1)j

(1 + x̄1)j
uj

and G(u, v) = Buv. Next, we transform the system and put the linear part in Jordan
normal form by considering

[
un
vn

]
= Q

[
Un
Vn

]
, where Q :=

 −1

2
x̄1 −

q

Bȳ1
1 0

 .
In this case, we obtain[

Un+1

Vn+1

]
=

[
p −

√
1− p2√

1− p2 p

][
Un
Vn

]
+Q−1

[
F1(Un, Vn)
G1(Un, Vn)

]
,

where

Q−1
[
F1

G1

]
=

 0 1

−Bȳ1
q

−Bx̄1ȳ1
2q


 F (−1

2
x̄1U −

q

Bȳ1
V, U)

G(−1

2
x̄1U −

q

Bȳ1
V, U)


=

 −1

2
(1 + µ)U2 − q

y
UV

C1U
2 + C2V

2 + C3UV + C4U
3 + C5V

3 + C6UV
2 + C7V U

2


and

C1 :=
(1− p)

2q

(
2

r
(1− p)(ȳ1 + 1) + µ− 1

)
, C2 :=

q

r
(1 + ȳ1),

C3 :=
2

r
(1− p)(ȳ1 + 1) +

1

2
(µ− 1), C4 :=

(1− p)3

qr
,

C5 :=
(1− p2)

r
, C6 :=

3q

r
(1− p) , C7 :=

3

r
(1− p)2.

Thus, we need to investigate the expression

A(r, B̃) = Re

(
(1− 2λ)λ̄2

1− λ
C11C20

)
+

1

2
|C11|2 + |C02|2 − Re

(
λ̄C21

)
(5.4)

at the shifted equilibrium (0, 0), where

[r, B̃] =

[
(µ+ t+ 1)2

(µ+ 1)(1− µ(t− 1))
, µ+ 2 +

t

(µ+ 1)

]
, 0 < t < 4
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and

C20 =
1

8
[FUU − FV V + 2GUV + i(GUU −GV V − 2FUV )]

=
1

8

(
2C3 − µ− 1 + 2(C1 − C2 +

q

ȳ1
)i

)
,

C11 =
1

4
[FUU + FV V + i(GUU +GV V )]

=
1

4
(−1− µ+ 2(C1 + C2)i) ,

C02 =
1

8
[FUU − FV V − 2GUV + i(GUU −GV V + 2FUV )]

=
1

8

(
−2C3 − µ− 1 + 2(C1 − C2 −

q

ȳ1
)i

)
,

C21 =
1

16
[FUUU + FUV V +GUUV +GV V V + i(GUUU +GUV V − FUUV − FV V V )]

=
1

8
(C7 + 3C5 + (3C4 + C6)i) .

Now, we have
(1− 2λ)λ̄2

1− λ
= 2p2 − p− 3

2
+
q(1− 6p+ 4p2)

2(1− p)
i. (5.5)

By substituting in the expression of A given in (5.4), we obtain a gigantic expression in
which handling by hand is a formidable task. But, we manipulate the expression using
Computer Algebra System such as MAPLE1 to obtain a simple expression written in
terms of ȳ1, µ and r. Here, we give the main steps. Substitute the expressions of Cj, j =
1, . . . , 7 inC20, C11, C02 andC21, then together with the expression of (5.5), we substitute
in the expression of (5.4) to obtain the A-expression in terms of (p, q, ȳ1, µ, r). Multiply
the expression by the positive quantity 64(1 − p)q2r2y2 to get rid of the denominator,
then substitute q =

√
1− p2. Factor out the positive quantity (1 + p)(1− p)2 and ignore

it to obtain an expression in terms of (p, ȳ1, µ, r). Next, substitute p =
1

2
(2− (µ+ 1)ȳ1),

then factor out the positive quantity 8ȳ21 and ignore it to obtain the following expression
in terms of (ȳ1, µ, r):

[2ȳ1+(3µr+4)](µ+1)ȳ21+[µ2(µ+1)r2+(3µ2+2µ−2)r+2(µ+1)]ȳ1−r(µ(r−2)−1).
(5.6)

1The MAPLE commands used to manipulate the expression are available at www.alsharawi.info
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From the condition that puts the eigenvalues on the unit circle, i.e., Bx̄1ȳ1 = (µ+1)ȳ1 =
rx̄1

(1 + x̄1)2
, we obtain

ȳ21 = r − 1− (2 + µr)ȳ1.

Now, substitute r − 1− (2 + µr)ȳ1 for ȳ21 in the A-expression, then again isolate ȳ21 and
substitute to obtain

sign(A) = sign
(
r(µ(µ+ 2)ȳ1 + µ(µr + 1) + 1− µ2)

)
= +.

(a) The prey population xn (b) The predator population yn

Figure 5.1: Those figures illustrate the bifurcation that takes place when the equilibrium
(x̄1, ȳ1) loses its stability. To be more specific, the plot is taken for orbits near the

equilibrium when µ = 0.6, 1 < t < min

{
4, 1 +

1

µ

}
, r(t) =

(µ+ t+ 1)2

(µ+ 1)(1− µ(t− 1))

and B̃(t) = µ + 2 +
t

(µ+ 1)
+ 0.1. In other words, the horizontal axis represents a

perturbation (from above) of the blue-solid curve in Fig. 2.2 (b).

The densely shaded regions in figures 5.1a and 5.1b are representing the invariant
curve obtained through the Neimark–Sacker bifurcation. To illustrate that, we consider
µ = 0.6, B̃ = 4.0, r = 35.0 and plot the curve in Fig 5.2.
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12 12.5 13 13.5 14 14.5 15 15.5
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1.6

y
n

xn

Figure 5.2: This figure shows the invariant curve obtained through a Neimark–Sacker
bifurcation. The red orbit is taken for an orbit starting outside of the curve while
the blue one is taken for an orbit inside the curve. The values of the parameters are
µ = 0.6, B̃ = 4.0 and r = 35.0.

Remark 5.3. Based on the local stability result in Lemma 2.2 and the Neimark–Sacker

bifurcation obtained in this section, we summarize the following: If µ >
1

3
, then

increasing the parameter B̃ through B̃1 leads to (x̄1, ȳ1) losing its stability and to the

creation of a stable invariant curve around (x̄1, ȳ1). However, if µ <
1

3
, then increasing B̃

through B̃1 under the condition r <
(µ+ 5)2

(µ+ 1)(1− 3µ)
leads to (x̄1, ȳ1) losing its stability

and to the creation of a stable invariant curve around (x̄1, ȳ1), while increasing B̃ through

B̃1 under the condition r >
(µ+ 5)2

(µ+ 1)(1− 3µ)
leads to (x̄1, ȳ1) losing its stability without

a Neimark–Sacker bifurcation. Finally, it is possible to depend on some recent results in
the literature [11, 12, 16] and investigate the characteristics of the invariant curve assured
by Theorem 5.2.
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