Periodic Solutions to a Class of Mixed Max-Type Nonlinear Difference Equations

Jahmario L. Williams
Texas Southern University
Department of Mathematics
williamsjl@tsu.edu

Abstract

We investigate the closed form solutions of a certain system of nonlinear mixed max-type difference equations. Under certain conditions, we show that the solutions to the system are periodic. Furthermore, we give graphical evidence that verifies the periodicity of the system being analyzed.

AMS Subject Classifications: 39A05, 39A23.
Keywords: Periodic solutions, mixed-max type difference equations.

1 Introduction

Difference equations are pervasive in mathematics and understanding the behavior of such equations gives insight to many interesting problems, see [4, 7, 11, 16]. Studying the periodic nature of certain difference equations has attracted many authors, see [1–3, 5, 6, 8–10, 12–14].

In 2015, Nouressadat Touafek and Nabila Haddad studied the closed form periodic solutions in [15] to the following mixed max-type rational system of difference equations

\[x_{n+1} = \frac{x_n y_n}{y_{n-1}}, \quad y_{n+1} = \max \left\{ \frac{A_n}{x_n}, y_{n-1} \right\}. \]

We study the periodic solutions of the system of difference equations

\[x_{n+1} = \frac{f(y_n)}{x_n}, \quad y_{n+1} = \max \left\{ x_n^2, \frac{A}{x_n} \right\} \quad \text{for } n \in N_0, \tag{1.1} \]

where \(x_{-1} = \alpha, y_{-1} = \beta, x_0 = \lambda, \) and \(y_0 = \mu \) are positive numbers.

Received August 22, 2016; Accepted December 13, 2016
Communicated by Martin Bohner
2 Assumptions

The function f will have one of the following forms:

\[f(z) = 1, \quad (2.1) \]
\[f(z) = \begin{cases}
B, & \text{if } z > 0 \\
C, & \text{if } z < 0
\end{cases}, \quad (2.2) \]
\[f(z) = \begin{cases}
B, & \text{if } z > 0 \\
Cz, & \text{if } z < 0
\end{cases}, \quad (2.3) \]

where $B, C \in \mathbb{R}$ such that $B^2 + C^2 \neq 0$.

3 Main Results

Theorem 3.1. Assume that (2.1) holds with $0 < x_{-1}, y_{-1}, x_0, y_0 < A < 1$. Also, let \(\{x_n, y_n\} \) be a solution of the system of equations (1.1) with $x_{-1} = \alpha$, $y_{-1} = \beta$, $x_0 = \lambda$, and $y_0 = \mu$. Then all solutions of (1.1) are of the following:

\[
x_{4n-3} = \frac{1}{\alpha}, \quad y_{4n-3} = \frac{A}{\alpha} \\
x_{4n-2} = \frac{1}{\lambda}, \quad y_{4n-2} = \frac{A}{\lambda} \\
x_{4n-1} = \alpha, \quad y_{4n-1} = \frac{1}{\alpha^2} \\
x_{4n} = \lambda, \quad y_{4n} = \frac{1}{\lambda^2}.
\]

Proof. For $n = 1$, we have

\[
x_1 = \frac{f(y_0)}{x_{-1}} = \frac{1}{\alpha}, \quad y_1 = \max \left\{ x_{-1}^2, \frac{A}{x_{-1}} \right\} = \max \left\{ \alpha^2, \frac{A}{\alpha} \right\} = \frac{A}{\alpha} \\
x_2 = \frac{f(y_0)}{x_0} = \frac{1}{\lambda}, \quad y_2 = \max \left\{ x_0^2, \frac{A}{x_0} \right\} = \max \left\{ \lambda^2, \frac{A}{\lambda} \right\} = \frac{A}{\lambda} \\
x_3 = \frac{f(y_2)}{x_1} = \frac{1}{1/\alpha} = \alpha, \quad y_3 = \max \left\{ x_1^2, \frac{A}{x_1} \right\} = \max \left\{ \frac{1}{\alpha^2}, A\alpha \right\} = \frac{1}{\alpha^2} \\
x_4 = \frac{f(y_3)}{x_2} = \frac{1}{1/\lambda} = \lambda, \quad y_4 = \max \left\{ x_2^2, \frac{A}{x_2} \right\} = \max \left\{ \frac{1}{\lambda^2}, A\lambda \right\} = \frac{1}{\lambda^2}.
\]
So the result holds for $n = 1$. Now suppose the result is true for some $k \in \mathbb{N}$, that is,

$$
\begin{align*}
 x_{4k-3} &= \frac{1}{\alpha}, & y_{4k-3} &= \frac{A}{\alpha} \\
 x_{4k-2} &= \frac{1}{\lambda}, & y_{4k-2} &= \frac{A}{\lambda} \\
 x_{4k-1} &= \alpha, & y_{4k-1} &= \frac{1}{\alpha^2} \\
 x_{4k} &= \lambda, & y_{4k} &= \frac{1}{\lambda^2}.
\end{align*}
$$

Then, for $k + 1$ we have the following:

$$
\begin{align*}
 x_{4k+1} &= f(y_{4k}) = \frac{1}{\alpha}, & y_{4k+1} &= \max \left\{ x_{4k+1}^2, \frac{A}{x_{4k+1}} \right\} = \max \left\{ \alpha^2, \frac{A}{\alpha} \right\} = \frac{A}{\alpha} \\
 x_{4k+2} &= f(y_{4k+1}) = \frac{1}{\lambda}, & y_{4k+2} &= \max \left\{ x_{4k+2}^2, \frac{A}{x_{4k+2}} \right\} = \max \left\{ \lambda^2, \frac{A}{\lambda} \right\} = \frac{A}{\lambda} \\
 x_{4k+3} &= f(y_{4k+2}) = \frac{1}{1/\alpha} = \alpha \\
 y_{4k+3} &= \max \left\{ x_{4k+3}^2, \frac{A}{x_{4k+3}} \right\} = \max \left\{ \frac{1}{\alpha^2}, A\alpha \right\} = \frac{1}{\alpha^2} \\
 x_{4k+4} &= f(y_{4k+3}) = \frac{1}{1/\lambda} = \lambda \\
 y_{4k+4} &= \max \left\{ x_{4k+4}^2, \frac{A}{x_{4k+4}} \right\} = \max \left\{ \frac{1}{\lambda^2}, A\lambda \right\} = \frac{1}{\lambda^2}.
\end{align*}
$$

Therefore the result is true for every $k \in \mathbb{N}$. This concludes the proof. \qed

To see the periodic behavior of $\{x_n, y_n\}$, observe the three diagrams in Figure 3.1 with $x_1 = 1/2$, $x_2 = 1/3$, $y_1 = 1/4$, $y_2 = 1/5$, and $A = 3/4$.

Theorem 3.2. Assume that (2.2) holds with $B, C < 0$ and $0 < x_{-1}, y_{-1}, x_0, y_0 < A < 1$. Also, let $\{x_n, y_n\}$ be a solution of the system of equations (1.1) with $x_{-1} = \alpha$, $y_{-1} = \beta$, $x_0 = \lambda$, and $y_0 = \mu$. Then all solutions of (1.1) are of the following:

$$
\begin{align*}
 x_{4n-3} &= \frac{B}{\alpha}, \quad y_{4n-3} = \frac{A}{\alpha} \\
 x_{4n-2} &= \frac{B}{\lambda}, \quad y_{4n-2} = \frac{A}{\lambda} \\
 x_{4n-1} &= \alpha, \quad y_{4n-1} = \left(\frac{B}{\alpha}\right)^2 \\
 x_{4n} &= \lambda, \quad y_{4n} = \left(\frac{B}{\lambda}\right)^2.
\end{align*}
$$

Proof. For $n = 1$, we have

$$
\begin{align*}
 x_1 &= \frac{f(y_0)}{x_1} = \frac{B}{\alpha}, \quad y_1 = \max\left\{x_{-1}, \frac{A}{x_{-1}}\right\} = \max\left\{\alpha, \frac{A}{\alpha}\right\} = \frac{A}{\alpha} \\
 x_2 &= \frac{f(y_0)}{x_1} = \frac{B}{\lambda}, \quad y_2 = \max\left\{x_{-1}, \frac{A}{x_{-1}}\right\} = \max\left\{\lambda, \frac{A}{\lambda}\right\} = \frac{A}{\lambda} \\
 x_3 &= \frac{f(y_2)}{x_1} = \frac{B}{B/\alpha} = \alpha, \quad y_3 = \max\left\{x_{-1}, \frac{A}{x_{-1}}\right\} = \max\left\{\alpha, \frac{A}{\alpha}\right\} = \left(\frac{B}{\alpha}\right)^2 \\
 x_4 &= \frac{f(y_3)}{x_3} = \frac{B}{B/\lambda} = \lambda, \quad y_4 = \max\left\{x_{-1}, \frac{A}{x_{-1}}\right\} = \max\left\{\alpha, \frac{A}{\alpha}\right\} = \left(\frac{B}{\lambda}\right)^2.
\end{align*}
$$

So the result holds for $n = 1$. Now suppose the result is true for some $k \in \mathbb{N}$, that is,

$$
\begin{align*}
 x_{4k-3} &= \frac{B}{\alpha}, \quad y_{4k-3} = \frac{A}{\alpha} \\
 x_{4k-2} &= \frac{B}{\lambda}, \quad y_{4k-2} = \frac{A}{\lambda} \\
 x_{4k-1} &= \alpha, \quad y_{4k-1} = \left(\frac{B}{\alpha}\right)^2 \\
 x_{4k} &= \lambda, \quad y_{4k} = \left(\frac{B}{\lambda}\right)^2.
\end{align*}
$$

Then, for $k + 1$ we have the following:

$$
\begin{align*}
 x_{4k+1} &= \frac{f(y_{4k})}{x_{4k}} = \frac{B}{\alpha}, \quad y_{4k+1} = \max\left\{x_{4k-1}, \frac{A}{x_{4k-1}}\right\} = \max\left\{\alpha, \frac{A}{\alpha}\right\} = \frac{A}{\alpha}
\end{align*}
$$
Therefore the result is true for every $k \in \mathbb{N}$. This concludes the proof. \hfill \Box

To see the periodic behavior of $\{x_n, y_n\}$, observe the three diagrams in Figure 3.2 with $x_1 = 1/2$, $x_2 = 1/3$, $y_1 = 1/4$, $y_2 = 1/5$, $A = 3/4$, $B = -2$, and $C = -1$.

Theorem 3.3. Assume that (2.2) holds with $A, B, C > 0$ and $x_{-1}, y_{-1}, x_0, y_0 \leq 0$. Also, let $\{x_n, y_n\}$ be a solution of the system of equations (1.1) with $x_{-1} = \alpha$, $y_{-1} = \beta$, $x_0 = \lambda$, and $y_0 = \mu$. Then all solutions of (1.1) are of the following:

\[y_1 = \alpha^2. \]

For $n \in \mathbb{N}$,

\[x_{4n-3} = \frac{C}{\alpha}, \quad y_{4n-2} = \lambda^2 \]

\[x_{4n-2} = \frac{B}{\lambda}, \quad y_{4n-1} = \left(\frac{C}{\alpha} \right)^2 \]

\[x_{4n-1} = \frac{B}{C} \alpha, \quad y_{4n} = \left(\frac{B}{\lambda} \right)^2 \]

\[x_{4n} = \lambda, \quad y_{4n+1} = \left(\frac{B \lambda}{C} \right)^2. \]
Proof. First,

\[y_1 = \max \left\{ x_{-1}^2, \frac{A}{x_{-1}} \right\} = \max \left\{ \alpha^2, \frac{A}{\alpha} \right\} = \alpha^2. \]

Next, we shall proceed by induction on \(n \). For \(n = 1 \), we have

\[x_1 = \frac{f(y_0)}{x_{-1}} = \frac{C}{\alpha}, \quad y_2 = \max \left\{ \lambda^2, \frac{A}{\lambda^2} \right\} = \lambda^2. \]

\[x_2 = \frac{f(y_1)}{x_0} = \frac{B}{\lambda}, \quad y_3 = \max \left\{ \left(\frac{C}{\alpha} \right)^2, \frac{A}{C} \right\} = \left(\frac{C}{\alpha} \right)^2. \]

\[x_3 = \frac{f(y_2)}{x_1} = \frac{B}{C/\alpha} = \frac{B}{C^2}, \quad y_4 = \max \left\{ \left(\frac{B}{\lambda} \right)^2, \frac{A}{B} \right\} = \left(\frac{B}{\lambda} \right)^2. \]

\[x_4 = \frac{f(y_3)}{x_2} = \frac{B}{B/\lambda} = \lambda, \quad y_5 = \max \left\{ \left(\frac{B\alpha}{C} \right)^2, \frac{AC}{B\alpha} \right\} = \left(\frac{B\alpha}{C} \right)^2. \]

So the result holds for \(n = 1 \). Now suppose the result is true for some \(k > 0 \), that is,

\[x_{4k-3} = \frac{C}{\alpha}, \quad y_{4k-2} = \lambda^2. \]

\[x_{4k-2} = \frac{B}{\lambda}, \quad y_{4k-1} = \left(\frac{C}{\alpha} \right)^2. \]

\[x_{4k-1} = \frac{B}{C^2}, \quad y_{4k} = \left(\frac{B}{\lambda} \right)^2. \]

\[x_{4k} = \lambda, \quad y_{4k+1} = \left(\frac{B\alpha}{C} \right)^2. \]

Then, for \(k + 1 \) we have the following:

\[x_{4k+1} = \frac{f(y_{4k})}{x_{4k-1}} = \frac{f \left(\left(\frac{B}{\lambda} \right)^2 \right)}{B\alpha/C} = \frac{B}{B\alpha/C} = \frac{C}{\alpha}. \]

\[y_{4k+2} = \max \left\{ x_{4k}^2, \frac{A}{x_{4k}} \right\} = \max \left\{ \lambda^2, \frac{A}{\lambda^2} \right\} = \lambda^2. \]

\[x_{4k+2} = \frac{f(y_{4k+1})}{x_{4k}} = \frac{f \left(\left(\frac{B\alpha}{C} \right)^2 \right)}{\lambda} = \frac{B}{\lambda}. \]

\[y_{4k+3} = \max \left\{ x_{4k+1}^2, \frac{A}{x_{4k+1}} \right\} = \max \left\{ \left(\frac{C}{\alpha} \right)^2, \frac{A}{C\alpha} \right\} = \left(\frac{C}{\alpha} \right)^2. \]
Figure 3.3:

\[x_{4k+3} = \frac{f(y_{4k+2})}{x_{4k+1}} = \frac{f(\lambda^2)}{C/\alpha} = \frac{B}{C/\alpha} = \frac{B}{C} \alpha \]

\[y_{4k+4} = \max \left\{ x_{4k+2}^2, \frac{A}{x_{4k+2}} \right\} = \max \left\{ \left(\frac{B}{\lambda} \right)^2, \frac{A}{B} \lambda \right\} = \left(\frac{B}{\lambda} \right)^2 \]

\[x_{4k+4} = \frac{f(y_{4k+3})}{x_{4k+2}} = \frac{f\left(\left(\frac{C}{\alpha} \right)^2 \right)}{B/\lambda} = \frac{B}{B/\lambda} = \lambda \]

\[y_{4k+5} = \max \left\{ x_{4k+3}^2, \frac{A}{x_{4k+3}} \right\} = \max \left\{ \left(\frac{Bo}{C} \right)^2, \frac{AC}{B}\alpha \right\} = \left(\frac{Bo}{C} \right)^2. \]

Therefore the result is true for every \(k \in \mathbb{N} \). This concludes the proof. \(\square \)

To see the periodic behavior of \(\{x_n, y_n\} \), observe the three diagrams in Figure 3.3 with \(x_1 = -2, x_2 = -3, y_1 = -4, y_2 = -5, A = 3/4, B = 2, \) and \(C = 1 \).

Theorem 3.4. Assume that (2.3) holds with \(A, B > 0 \) and \(x_{-1}, y_{-1}, x_0, y_0, C < 0 \). Also, let \(\{x_n, y_n\} \) be a solution of the system of equations (1.1) with \(x_{-1} = \alpha, y_{-1} = \beta, x_0 = \lambda, \) and \(y_0 = \mu \). Then all solutions of (1.1) are of the following:

\[y_1 = \alpha^2. \]

For \(n \in \mathbb{N} \),

\[x_{4n-3} = \frac{C\mu}{\alpha}, \quad y_{4n-2} = \lambda^2 \]

\[x_{4n-2} = \frac{B}{\lambda}, \quad y_{4n-1} = \left(\frac{C\mu}{\alpha} \right)^2 \]

\[x_{4n-1} = \frac{Bo}{C\mu}, \quad y_{4n} = \left(\frac{B}{\lambda} \right)^2 \]

\[x_{4n} = \lambda, \quad y_{4n+1} = \left(\frac{Bo}{C\mu} \right)^2. \]
Proof. First,

\[y_1 = \max \left\{ x_{-1}^2, \frac{A}{x_{-1}} \right\} = \max \left\{ \alpha^2, \frac{A}{\alpha} \right\} = \alpha^2. \]

Next, we shall proceed by induction on \(n \). For \(n = 1 \), we have

\[x_1 = \frac{f(y_0)}{x_{-1}} = \frac{C\mu}{\alpha}, \quad y_2 = \max \left\{ x_0^2, \frac{A}{x_0} \right\} = \lambda^2 \]

\[x_2 = \frac{f(y_1)}{x_0} = \frac{B}{\lambda} \]

\[y_3 = \max \left\{ x_1^2, \frac{A}{x_1} \right\} = \max \left\{ \left(\frac{C\mu}{\alpha} \right)^2, \frac{A\alpha}{C\mu} \right\} = \left(\frac{C\mu}{\alpha} \right)^2 \]

\[x_3 = \frac{f(y_2)}{x_1} = \frac{B}{C\mu/\alpha} = \frac{B\alpha}{C\mu} \]

\[y_4 = \max \left\{ x_2^2, \frac{A}{x_2} \right\} = \max \left\{ \left(\frac{B}{\lambda} \right)^2, \frac{A\lambda}{B} \right\} = \left(\frac{B}{\lambda} \right)^2 \]

\[x_4 = \frac{f(y_3)}{x_2} = \frac{B}{B/\lambda} = \lambda \]

\[y_5 = \max \left\{ x_3^2, \frac{A}{x_3} \right\} = \max \left\{ \left(\frac{B\alpha}{C\mu} \right)^2, \frac{AC\mu}{B\alpha} \right\} = \left(\frac{B\alpha}{C\mu} \right)^2. \]

So the result holds for \(n = 1 \). Now suppose the result is true for some \(k \in N \), that is,

\[x_{4k-3} = \frac{C\mu}{\alpha}, \quad y_{4k-2} = \lambda^2 \]

\[x_{4k-2} = \frac{B}{\lambda}, \quad y_{4k-1} = \left(\frac{C\mu}{\alpha} \right)^2 \]

\[x_{4k-1} = \frac{B\alpha}{C\mu}, \quad y_{4k} = \left(\frac{B}{\lambda} \right)^2 \]

\[x_{4k} = \lambda, \quad y_{4k+1} = \left(\frac{B\alpha}{C\mu} \right)^2 \]

Then, for \(k + 1 \) we have the following:

\[x_{4k+1} = \frac{f(y_{4k})}{x_{4k-1}} = \frac{f \left(\left(\frac{B}{\lambda} \right)^2 \right)}{B\alpha/C\mu} = \frac{B}{B\alpha/C\mu} = \frac{C\mu}{\alpha} \]

\[y_{4k+2} = \max \left\{ x_{4k}^2, \frac{A}{x_{4k}} \right\} = \max \left\{ \lambda^2, \frac{A}{\lambda} \right\} = \lambda^2 \]
Figure 3.4:

\[x_{4k+2} = \frac{f(y_{4k+1})}{x_{4k}} = \frac{f\left(\left(\frac{B\alpha}{C\mu}\right)^2\right)}{\lambda} = \frac{B}{\lambda} \]

\[y_{4k+3} = \max\left\{ x_{4k+1}^2, \frac{A}{x_{4k+1}} \right\} = \max\left\{ \left(\frac{C\mu}{\alpha}\right)^2, \frac{A\alpha}{C\mu} \right\} = \left(\frac{C\mu}{\alpha}\right)^2 \]

\[x_{4k+3} = \frac{f(y_{4k+2})}{x_{4k+1}} = \frac{f\left(\frac{\lambda^2}{C\mu/\alpha}\right)}{B/\lambda} = \frac{B\alpha}{C\mu} = \frac{B}{C\mu/\alpha} = \frac{B\alpha}{C\mu} \]

\[y_{4k+4} = \max\left\{ x_{4k+2}^2, \frac{A}{x_{4k+2}} \right\} = \max\left\{ \left(\frac{B\lambda}{C\mu}\right)^2, \frac{A\lambda}{B\lambda} \right\} = \left(\frac{B\lambda}{C\mu}\right)^2 \]

\[x_{4k+4} = \frac{f(y_{4k+3})}{x_{4k+2}} = \frac{f\left(\frac{C\mu}{\alpha}\right)^2}{B/\lambda} = \frac{B}{\lambda} = \lambda \]

\[y_{4k+5} = \max\left\{ x_{4k+3}^2, \frac{A}{x_{4k+3}} \right\} = \max\left\{ \left(\frac{B\alpha}{C\mu}\right)^2, \frac{AC\mu}{B\alpha} \right\} = \left(\frac{B\alpha}{C\mu}\right)^2 . \]

Therefore the result is true for every \(k \in \mathbb{N} \). This concludes the proof.

To see the periodic behavior of \(\{x_n, y_n\} \), observe the three diagrams in Figure 3.4 with \(x_1 = -1/2, x_2 = -1/3, y_1 = -1/4, y_2 = -1/5, A = 3/4, B = 1, \) and \(C = -1 \).

Theorem 3.5. Assume that (2.2) holds with \(B, C > 0 \) and let \(\{x_n, y_n\} \) be a solution of the system of equations (1.1) with \(x_1 = \alpha, y_1 = \beta, x_0 = \lambda, \) and \(y_0 = \mu \) all positive. Furthermore, assume

\[A < \alpha^3, \quad A < \lambda^3 \]

and

\[B^3 > A\alpha^3, \quad B^3 > A\lambda^3. \]

Then all solutions of (1.1) are of the following:

\[x_{4n-3} = B/\alpha, \quad y_{4n-3} = \alpha^2. \]
Proof. For $n = 1$, we have

\begin{align*}
x_4 &= \frac{f(y_0)}{x_1} = \frac{B}{\alpha}, \quad y_1 = \max \left\{ \frac{x_0^2}{x_1}, \frac{A}{x_1} \right\} = \alpha^2 \\
x_2 &= \frac{f(y_1)}{x_0} = \frac{B}{\lambda}, \quad y_2 = \max \left\{ \frac{x_0^2}{x_0}, \frac{A}{x_0} \right\} = \lambda^2 \\
x_3 &= \frac{f(y_2)}{x_1} = \frac{B}{B/\alpha} = \alpha, \quad y_3 = \max \left\{ \frac{x_1^2}{x_1}, \frac{A}{x_1} \right\} = \max \left\{ \frac{(B/\alpha)^2}{A/\alpha}, \frac{A\alpha}{B} \right\} = \left(\frac{B}{\alpha} \right)^2 \\
x_4 &= \frac{f(y_3)}{x_2} = \frac{B}{B/\lambda} = \lambda, \quad y_4 = \max \left\{ \frac{x_2^2}{x_2}, \frac{A}{x_2} \right\} = \max \left\{ \frac{(B/\lambda)^2}{A/\lambda}, \frac{A\lambda}{B} \right\} = \left(\frac{B}{\lambda} \right)^2.
\end{align*}

So the result holds for $n = 1$. Now suppose the result is true for some $k \in \mathbb{N}$, that is,

\begin{align*}
x_{4k-3} &= \frac{B}{\alpha}, \quad y_{4k-3} = \alpha^2 \\
x_{4k-2} &= \frac{B}{\lambda}, \quad y_{4k-2} = \lambda^2 \\
x_{4k-1} &= \alpha, \quad y_{4k-1} = \left(\frac{B}{\alpha} \right)^2 \\
x_{4k} &= \lambda, \quad y_{4k} = \left(\frac{B\alpha}{\lambda} \right)^2.
\end{align*}

Then, for $k + 1$ we have the following:

\begin{align*}
x_{4k+1} &= \frac{f(y_{4k})}{x_{4k-1}} = \frac{B}{\alpha}, \quad y_{4k+1} = \max \left\{ \frac{x_{4k-1}^2}{x_{4k-1}}, \frac{A}{x_{4k-1}} \right\} = \max \left\{ \alpha^2, \frac{A}{\alpha} \right\} = \alpha^2 \\
x_{4k+2} &= \frac{f(y_{4k+1})}{x_{4k}} = \frac{B}{\lambda}, \quad y_{4k+2} = \max \left\{ \frac{x_{4k}^2}{x_{4k}}, \frac{A}{x_{4k}} \right\} = \max \left\{ \lambda^2, \frac{A}{\lambda} \right\} = \lambda^2 \\
x_{4k+3} &= \frac{f(y_{4k+2})}{x_{4k+1}} = \frac{f(\lambda^2)}{B/\alpha} = \frac{B}{B/\alpha} = \alpha.
\end{align*}
Periodic Solutions

Figure 3.5:

\[y_{4k+3} = \max \left\{ x_{4k+1}, \frac{A}{x_{4k+1}} \right\} = \max \left\{ \left(\frac{B}{\alpha} \right)^2, \frac{A\alpha}{B} \right\} = \left(\frac{B}{\alpha} \right)^2 \]

\[x_{4k+4} = \frac{f(y_{4k+3})}{x_{4k+2}} = \frac{f\left(\left(\frac{B}{\alpha} \right)^2 \right)}{B/\lambda} = \frac{B}{B/\lambda} = \lambda \]

\[y_{4k+4} = \max \left\{ x_{4k+2}, \frac{A}{x_{4k+2}} \right\} = \max \left\{ \left(\frac{B}{\lambda} \right)^2, \frac{A\lambda}{B} \right\} = \left(\frac{B}{\lambda} \right)^2. \]

Therefore the result is true for every \(k \in \mathbb{N} \). This concludes the proof. \(\square \)

To see the periodic behavior of \(\{x_n, y_n\} \), observe the three diagrams in Figure 3.5 with \(x_1 = 1, x_2 = 2, y_1 = 3, y_2 = 4, A = 1/2, \) and \(B = 4 \).

Acknowledgements

This work is supported by Texas Southern University Research Seed Grant and the author would like to thank the anonymous referees for carefully reading the manuscript and providing valuable suggestions.

References

