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Abstract

We investigate the closed form solutions of a certain system of nonlinear mixed
max-type difference equations. Under certain conditions, we show that the solu-
tions to the system are periodic. Furthermore, we give graphical evidence that
verifies the periodicity of the system being analyzed.
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1 Introduction
Difference equations are pervasive in mathematics and understanding the behavior of
such equations gives insight to many interesting problems, see [4, 7, 11, 16]. Studying
the periodic nature of certain difference equations has attracted many authors, see [1–3,
5, 6, 8–10, 12–14].

In 2015, Nouressadat Touafek and Nabila Haddad studied the closed form periodic
solutions in [15] to the following mixed max-type rational system of difference equa-
tions

xn+1 =
xnyn
yn−1

, yn+1 = max

{
An
xn
, yn−1

}
.

We study the periodic solutions of the system of difference equations

xn+1 =
f(yn)

xn−1

, yn+1 = max

{
x2n−1,

A

xn−1

}
for n ∈ N0, (1.1)

where x−1 = α, y−1 = β, x0 = λ, and y0 = µ are positive numbers.
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2 Assumptions
The function f will have one of the following forms:

f(z) = 1, (2.1)

f(z) =

{
B, if z > 0

C, if z < 0,
(2.2)

f(z) =

{
B, if z > 0

Cz, if z < 0,
(2.3)

where B, C ∈ R such that B2 + C2 6= 0.

3 Main Results
Theorem 3.1. Assume that (2.1) holds with 0 < x−1, y−1, x0, y0 < A < 1. Also, let
{xn, yn} be a solution of the system of equations (1.1) with x−1 = α, y−1 = β, x0 = λ,
and y0 = µ. Then all solutions of (1.1) are of the following:

x4n−3 =
1

α
, y4n−3 =

A

α

x4n−2 =
1

λ
, y4n−2 =

A

λ

x4n−1 = α, y4n−1 =
1

α2

x4n = λ, y4n =
1

λ2
.

Proof. For n = 1, we have

x1 =
f (y0)

x−1

=
1

α
, y1 = max

{
x2−1,

A

x−1

}
= max

{
α2,

A

α

}
=
A

α

x2 =
f (y0)

x0
=

1

λ
, y2 = max

{
x20,

A

x0

}
= max

{
λ2,

A

λ

}
=
A

λ

x3 =
f (y2)

x1
=

1

1/α
= α, y3 = max

{
x21,

A

x1

}
= max

{
1

α2
, Aα

}
=

1

α2

x4 =
f (y3)

x2
=

1

1/λ
= λ, y4 = max

{
x22,

A

x2

}
= max

{
1

λ2
, Aλ

}
=

1

λ2
.
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Figure 3.1:

So the result holds for n = 1. Now suppose the result is true for some k ∈ N , that is,

x4k−3 =
1

α
, y4k−3 =

A

α

x4k−2 =
1

λ
, y4k−2 =

A

λ

x4k−1 = α, y4k−1 =
1

α2

x4k = λ, y4k =
1

λ2
.

Then, for k + 1 we have the following:

x4k+1 =
f (y4k)

x4k−1

=
1

α
, y4k+1 = max

{
x24k−1,

A

x4k−1

}
= max

{
α2,

A

α

}
=
A

α

x4k+2 =
f (y4k+1)

x4k
=

1

λ
, y4k+2 = max

{
x24k,

A

x4k

}
= max

{
λ2,

A

λ

}
=
A

λ

x4k+3 =
f (y4k+2)

x4k+1

=
1

1/α
= α

y4k+3 = max

{
x24k+1,

A

x4k+1

}
= max

{
1

α2
, Aα

}
=

1

α2

x4k+4 =
f (y4k+3)

x4k+2

=
1

1/λ
= λ

y4k+4 = max

{
x24k+2,

A

x4k+2

}
= max

{
1

λ2
, Aλ

}
=

1

λ2
.

Therefore the result is true for every k ∈ N . This concludes the proof.

To see the periodic behavior of {xn, yn}, observe the three diagrams in Figure 3.1
with x1 = 1/2, x2 = 1/3, y1 = 1/4, y2 = 1/5, and A = 3/4.
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Theorem 3.2. Assume that (2.2) holds with B,C < 0 and 0 < x−1, y−1, x0, y0 <
A < 1. Also, let {xn, yn} be a solution of the system of equations (1.1) with x−1 = α,
y−1 = β, x0 = λ, and y0 = µ. Then all solutions of (1.1) are of the following:

x4n−3 =
B

α
, y4n−3 =

A

α

x4n−2 =
B

λ
, y4n−2 =

A

λ

x4n−1 = α, y4n−1 =

(
B

α

)2

x4n = λ, y4n =

(
B

λ

)2

.

Proof. For n = 1, we have

x1 =
f (y0)

x−1

=
B

α
, y1 = max

{
x2−1,

A

x−1

}
= max

{
α2,

A

α

}
=
A

α

x2 =
f (y0)

x−1

=
B

λ
, y2 = max

{
x20,

A

x0

}
= max

{
λ2,

A

λ

}
=
A

λ

x3 =
f (y2)

x1
=

B

B/α
= α, y3 = max

{
x21,

A

x1

}
= max

{
B2

α2
,
A

B
α

}
=

(
B

α

)2

x4 =
f (y3)

x2
=

B

B/λ
= λ, y4 = max

{
x22,

A

x2

}
= max

{
B2

λ2
,
A

B
λ

}
=

(
B

λ

)2

.

So the result holds for n = 1. Now suppose the result is true for some k ∈ N , that is,

x4k−3 =
B

α
, y4k−3 =

A

α

x4k−2 =
B

λ
, y4k−2 =

A

λ

x4k−1 = α, y4k−1 =

(
B

α

)2

x4k = λ, y4k =

(
B

λ

)2

.

Then, for k + 1 we have the following:

x4k+1 =
f (y4k)

x4k−1

=
B

α
, y4k+1 = max

{
x24k−1,

A

x4k−1

}
= max

{
α2,

A

α

}
=
A

α
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Figure 3.2:

x4k+2 =
f (y4k+1)

x4k
=
B

λ
, y4k+2 = max

{
x24k,

A

x4k

}
= max

{
λ2,

A

λ

}
=
A

λ

x4k+3 =
f (y4k+2)

x4k+1

=
B

B/α
= α

y4k+3 = max

{
x24k+1,

A

x4k+1

}
= max

{(
B

α

)2

,
A

B
α

}
=

(
B

α

)2

x4k+4 =
f (y4k+3)

x4k+2

=
B

B/λ
= λ

y4k+4 = max

{
x24k+2,

A

x4k+2

}
= max

{(
B

λ

)2

,
A

B
λ

}
=

(
B

λ

)2

.

Therefore the result is true for every k ∈ N . This concludes the proof.

To see the periodic behavior of {xn, yn}, observe the three diagrams in Figure 3.2
with x1 = 1/2, x2 = 1/3, y1 = 1/4, y2 = 1/5, A = 3/4, B = −2, and C = −1.

Theorem 3.3. Assume that (2.2) holds with A,B,C > 0 and x−1, y−1, x0, y0 ≤ 0.
Also, let {xn, yn} be a solution of the system of equations (1.1) with x−1 = α, y−1 = β,
x0 = λ, and y0 = µ. Then all solutions of (1.1) are of the following:

y1 = α2.

For n ∈ N ,

x4n−3 =
C

α
, y4n−2 = λ2

x4n−2 =
B

λ
, y4n−1 =

(
C

α

)2

x4n−1 =
B

C
α, y4n =

(
B

λ

)2

x4n = λ, y4n+1 =

(
Bλ

C

)2

.
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Proof. First,

y1 = max

{
x2−1,

A

x−1

}
= max

{
α2,

A

α

}
= α2.

Next, we shall proceed by induction on n. For n = 1, we have

x1 =
f (y0)

x−1

=
C

α
, y2 = max

{
λ2,

A

λ2

}
= λ2

x2 =
f (y1)

x0
=
B

λ
, y3 = max

{(
C

α

)2

,
A

C
α

}
=

(
C

α

)2

x3 =
f (y2)

x1
=

B

C/α
=
B

C
α, y4 = max

{(
B

λ

)2

,
A

B
λ

}
=

(
B

λ

)2

x4 =
f (y3)

x2
=

B

B/λ
= λ, y5 = max

{(
Bα

C

)2

,
AC

Bα

}
=

(
Bα

C

)2

.

So the result holds for n = 1. Now suppose the result is true for some k > 0, that is,

x4k−3 =
C

α
, y4k−2 = λ2

x4k−2 =
B

λ
, y4k−1 =

(
C

α

)2

x4k−1 =
B

C
α, y4k =

(
B

λ

)2

x4k = λ, y4k+1 =

(
Bλ

C

)2

.

Then, for k + 1 we have the following:

x4k+1 =
f (y4k)

x4k−1

=
f
((

B
λ

)2)
Bα/C

=
B

Bα/C
=
C

α

y4k+2 = max

{
x24k,

A

x4k

}
= max

{
λ2,

A

λ2

}
= λ2

x4k+2 =
f (y4k+1)

x4k
=
f
((

Bλ
C

)2)
λ

=
B

λ

y4k+3 = max

{
x24k+1,

A

x4k+1

}
= max

{(
C

α

)2

,
A

C
α

}
=

(
C

α

)2
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Figure 3.3:

x4k+3 =
f (y4k+2)

x4k+1

=
f (λ2)

C/α
=

B

C/α
=
B

C
α

y4k+4 = max

{
x24k+2,

A

x4k+2

}
= max

{(
B

λ

)2

,
A

B
λ

}
=

(
B

λ

)2

x4k+4 =
f (y4k+3)

x4k+2

=
f
((

C
α

)2)
B/λ

=
B

B/λ
= λ

y4k+5 = max

{
x24k+3,

A

x4k+3

}
= max

{(
Bα

C

)2

,
AC

Bα

}
=

(
Bα

C

)2

.

Therefore the result is true for every k ∈ N . This concludes the proof.

To see the periodic behavior of {xn, yn}, observe the three diagrams in Figure 3.3
with x1 = −2, x2 = −3, y1 = −4, y2 = −5, A = 3/4, B = 2, and C = 1.

Theorem 3.4. Assume that (2.3) holds with A,B > 0 and x−1, y−1, x0, y0, C < 0.
Also, let {xn, yn} be a solution of the system of equations (1.1) with x−1 = α, y−1 = β,
x0 = λ, and y0 = µ. Then all solutions of (1.1) are of the following:

y1 = α2.

For n ∈ N ,

x4n−3 =
Cµ

α
, y4n−2 = λ2

x4n−2 =
B

λ
, y4n−1 =

(
Cµ

α

)2

x4n−1 =
Bα

Cµ
, y4n =

(
B

λ

)2

x4n = λ, y4n+1 =

(
Bα

Cµ

)2

.
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Proof. First,

y1 = max

{
x2−1,

A

x−1

}
= max

{
α2,

A

α

}
= α2.

Next, we shall proceed by induction on n. For n = 1, we have

x1 =
f (y0)

x−1

=
Cµ

α
, y2 = max

{
x20,

A

x0

}
= λ2

x2 =
f (y1)

x0
=
B

λ

y3 = max

{
x21,

A

x1

}
= max

{(
Cµ

α

)2

,
Aα

Cµ

}
=

(
Cµ

α

)2

x3 =
f (y2)

x1
=

B

Cµ/α
=
Bα

Cµ

y4 = max

{
x22,

A

x2

}
= max

{(
B

λ

)2

,
Aλ

B

}
=

(
B

λ

)2

x4 =
f (y3)

x2
=

B

B/λ
= λ

y5 = max

{
x23,

A

x3

}
= max

{(
Bα

Cµ

)2

,
ACµ

Bα

}
=

(
Bα

Cµ

)2

.

So the result holds for n = 1. Now suppose the result is true for some k ∈ N , that is,

x4k−3 =
Cµ

α
, y4k−2 = λ2

x4k−2 =
B

λ
, y4k−1 =

(
Cµ

α

)2

x4k−1 =
Bα

Cµ
, y4k =

(
B

λ

)2

x4k = λ, y4k+1 =

(
Bα

Cµ

)2

.

Then, for k + 1 we have the following:

x4k+1 =
f (y4k)

x4k−1

=
f
((

B
λ

)2)
Bα/Cµ

=
B

Bα/Cµ
=
Cµ

α

y4k+2 = max

{
x24k,

A

x4k

}
= max

{
λ2,

A

λ

}
= λ2
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Figure 3.4:

x4k+2 =
f (y4k+1)

x4k
=

f

((
Bα
Cµ

)2)
λ

=
B

λ

y4k+3 = max

{
x24k+1,

A

x4k+1

}
= max

{(
Cµ

α

)2

,
Aα

Cµ

}
=

(
Cµ

α

)2

x4k+3 =
f (y4k+2)

x4k+1

=
f (λ2)

Cµ/α
=

B

Cµ/α
=
Bα

Cµ

y4k+4 = max

{
x24k+2,

A

x4k+2

}
= max

{(
B

λ

)2

,
A

B
λ

}
=

(
B

λ

)2

x4k+4 =
f (y4k+3)

x4k+2

=
f
((

Cµ
α

)2)
B/λ

=
B

B/λ
= λ

y4k+5 = max

{
x24k+3,

A

x4k+3

}
= max

{(
Bα

Cµ

)2

,
ACµ

Bα

}
=

(
Bα

Cµ

)2

.

Therefore the result is true for every k ∈ N . This concludes the proof.

To see the periodic behavior of {xn, yn}, observe the three diagrams in Figure 3.4
with x1 = −1/2, x2 = −1/3, y1 = −1/4, y2 = −1/5, A = 3/4, B = 1, and C = −1.

Theorem 3.5. Assume that (2.2) holds with B,C > 0 and let {xn, yn} be a solution of
the system of equations (1.1) with x−1 = α, y−1 = β, x0 = λ, and y0 = µ all positive.
Furthermore, assume

A < α3, A < λ3

and
B3 > Aα3, B3 > Aλ3.

Then all solutions of (1.1) are of the following:

x4n−3 =
B

α
, y4n−3 = α2
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x4n−2 =
B

λ
, y4n−2 = λ2

x4n−1 = α, y4n−1 =

(
B

α

)2

x4n = λ, y4n =

(
Bα

λ

)2

.

Proof. For n = 1, we have

x1 =
f (y0)

x−1

=
B

α
, y1 = max

{
x2−1,

A

x−1

}
= α2

x2 =
f (y1)

x0
=
B

λ
, y2 = max

{
x20,

A

x0

}
= λ2

x3 =
f (y2)

x1
=

B

B/α
= α, y3 = max

{
x21,

A

x1

}
= max

{(
B

α

)2

,
Aα

B

}
=

(
B

α

)2

x4 =
f (y3)

x2
=

B

B/λ
= λ, y4 = max

{
x22,

A

x2

}
= max

{(
B

λ

)2

,
Aλ

B

}
=

(
B

λ

)2

.

So the result holds for n = 1. Now suppose the result is true for some k ∈ N , that is,

x4k−3 =
B

α
, y4k−3 = α2

x4k−2 =
B

λ
, y4k−2 = λ2

x4k−1 = α, y4k−1 =

(
B

α

)2

x4k = λ, y4k =

(
Bα

λ

)2

.

Then, for k + 1 we have the following:

x4k+1 =
f (y4k)

x4k−1

=
B

α
, y4k+1 = max

{
x24k−1,

A

x4k−1

}
= max

{
α2,

A

α

}
= α2

x4k+2 =
f (y4k+1)

x4k
=
B

λ
, y4k+2 = max

{
x24k,

A

x4k

}
= max

{
λ2,

A

λ

}
= λ2

x4k+3 =
f (y4k+2)

x4k+1

=
f (λ2)

B/α
=

B

B/α
= α
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Figure 3.5:

y4k+3 = max

{
x24k+1,

A

x4k+1

}
= max

{(
B

α

)2

,
Aα

B

}
=

(
B

α

)2

x4k+4 =
f (y4k+3)

x4k+2

=
f
((

B
α

)2)
B/λ

=
B

B/λ
= λ

y4k+4 = max

{
x24k+2,

A

x4k+2

}
= max

{(
B

λ

)2

,
Aλ

B

}
=

(
B

λ

)2

.

Therefore the result is true for every k ∈ N . This concludes the proof.

To see the periodic behavior of {xn, yn}, observe the three diagrams in Figure 3.5
with x1 = 1, x2 = 2, y1 = 3, y2 = 4, A = 1/2, and B = 4.
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