Exponential, Trigonometric and Hyperbolic Functions Associated with a General Quantum Difference Operator

Alaa E. Hamza
Cairo University, Faculty of Science
Mathematics Department
Giza, Egypt
hamzaaeg2003@yahoo.com

Abdel-Shakoor M. Sarhan and Enas M. Shehata
Menoufia University, Faculty of Science
Mathematics Department
Shibin El-Koom, Egypt
sarhan1929@yahoo.com and enasmohyi@yahoo.com

Abstract

In this paper, we present the β-exponential and β-trigonometric functions based on the general quantum difference operator D_{β} defined by $$
D_{\beta} f(t)=\frac{f(\beta(t))-f(t)}{\beta(t)-t}, \beta(t) \neq t,
$$ which are the solutions of the first and second order β-difference equations, respectively. Here, β is a strictly increasing continuous function defined on an interval $I \subseteq \mathbb{R}$. Furthermore, we establish many properties of these functions. Finally, the β-hyperbolic functions and their properties are introduced.

AMS Subject Classifications: 39A10, 39A13, 39A70, 47B39.
Keywords: Quantum difference operator, quantum calculus, Hahn difference operator, Jackson q-difference operator.

```
Received November 11, 2016; Accepted April 27, }201
Communicated by Martin Bohner
```


1 Introduction

Quantum calculus is recently subject to an increase number of investigations, due to its applications. It substitutes the usual derivative by a difference operator, which allows one to deal with sets of non-differentiable functions [3, 10]. Quantum calculus has applications in many areas, for instance calculus of variations, economical systems, and several fields of physics such as black holes, quantum mechanics, nuclear and high energy physics [7-9, 16-19]. In [14] we have constructed a general quantum difference operator D_{β}, by considering a strictly increasing continuous function $\beta: I \rightarrow I$, where I is an interval of \mathbb{R} containing a fixed point s_{0} of β. The β-difference operator is defined by

$$
D_{\beta} f(t)=\left\{\begin{array}{l}
\frac{f(\beta(t))-f(t)}{\beta(t)-t}, t \neq s_{0} \\
f^{\prime}\left(s_{0}\right), \quad t=s_{0}
\end{array}\right.
$$

where f is an arbitrary function defined on I, and is differentiable at $t=s_{0}$ in the usual sense. As particular cases, we obtain the Hahn difference operator $D_{q, \omega}$ when $\beta(t)=q t+\omega, q \in(0,1), \omega>0$ are fixed numbers, the Jackson q-difference operator D_{q} when $\beta(t)=q t, q \in(0,1)$, the n, q-power quantum difference operator when $\beta(t)=q t^{n}, q \in(0,1), n$ is a fixed odd positive integer and the forward difference operator $\Delta_{a, b}$ when $\beta(t)=a t+b, a \geq 1, b \geq 0$ and $a+b>1$. For more details about these operators we refer the reader to $[1,2,4-6,11-13,15]$.

In a first step towards the development of the general quantum difference calculus, in [14], we considered our function β when it has only one fixed point $s_{0} \in I$ and satisfies the following condition

$$
\left(t-s_{0}\right)(\beta(t)-t) \leq 0 \text { for all } t \in I
$$

and gave a rigorous analysis of the calculus based on D_{β} and its associated integral operator. Some basic properties of such a calculus were stated and proved. For instance, the chain rule, Leibniz' formula, the mean value theorem and the fundamental theorem of β-calculus.

This paper is organized as follows. In Section 2, the β-exponential functions are defined and some of their properties are introduced. Also, we prove that they are the unique solutions of the first order β-difference equations. In Section 3, the β trigonometric functions are presented and their properties are established. In Section 4, the β-hyperbolic functions are exhibited and their properties are shown. Throughout the paper \mathbb{X} is a Banach space, I is an interval of \mathbb{R} containing only one fixed point s_{0} of β and

$$
\beta^{k}(t):=\underbrace{\beta \circ \beta \circ \cdots \circ \beta}_{k-\text { times }}(t) .
$$

We need the following results from [14] to prove our main results.

Theorem 1.1. If $f: I \rightarrow \mathbb{X}$ is continuous at s_{0}, then the series $\sum_{k=0}^{\infty} \|\left(\beta^{k}(t)-\right.$ $\left.\beta^{k+1}(t)\right) f\left(\beta^{k}(t)\right) \|$ is uniformly convergent on every compact interval $J \subseteq I$ containing s_{0}.

Definition 1.2. For a function $f: I \rightarrow \mathbb{X}$, we define the β-difference operator of f as

$$
D_{\beta} f(t)=\left\{\begin{array}{l}
\frac{f(\beta(t))-f(t)}{\beta(t)-t}, t \neq s_{0} \\
f^{\prime}\left(s_{0}\right), \quad t=s_{0}
\end{array}\right.
$$

provided that f^{\prime} exists at s_{0}. In this case, we say that $D_{\beta} f(t)$ is the β-derivative of f at t. We say that f is β-differentiable on I if $f^{\prime}\left(s_{0}\right)$ exists.

Theorem 1.3. Assume that $f: I \rightarrow \mathbb{X}$ and $g: I \rightarrow \mathbb{R}$ are β-differentiable at $t \in I$. Then:
(i) The product $f g: I \rightarrow \mathbb{X}$ is β-differentiable at t and

$$
\begin{aligned}
D_{\beta}(f g)(t) & =\left(D_{\beta} f(t)\right) g(t)+f(\beta(t)) D_{\beta} g(t) \\
& =\left(D_{\beta} f(t)\right) g(\beta(t))+f(t) D_{\beta} g(t) .
\end{aligned}
$$

(ii) f / g is β-differentiable at t and

$$
D_{\beta}(f / g)(t)=\frac{\left(D_{\beta} f(t)\right) g(t)-f(t) D_{\beta} g(t)}{g(t) g(\beta(t))},
$$

provided that $g(t) g(\beta(t)) \neq 0$.
Lemma 1.4. Let $f: I \rightarrow \mathbb{X}$ be β-differentiable and $D_{\beta} f(t)=0$ for all $t \in I$, then $f(t)=f\left(s_{0}\right)$ for all $t \in I$.

Theorem 1.5. Assume $f: I \rightarrow \mathbb{X}$ is continuous at s_{0}. Then the function F defined by

$$
\begin{equation*}
F(t)=\sum_{k=0}^{\infty}\left(\beta^{k}(t)-\beta^{k+1}(t)\right) f\left(\beta^{k}(t)\right), t \in I, \tag{1.1}
\end{equation*}
$$

is a β-antiderivative of f with $F\left(s_{0}\right)=0$. Conversely, a β-antiderivative F of f vanishing at s_{0} is given by the formula (1.1).

Definition 1.6. Let $f: I \rightarrow \mathbb{X}$ and $a, b \in I$. We define the β-integral of f from a to b by

$$
\begin{equation*}
\int_{a}^{b} f(t) d_{\beta} t=\int_{s_{0}}^{b} f(t) d_{\beta} t-\int_{s_{0}}^{a} f(t) d_{\beta} t \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{s_{0}}^{x} f(t) d_{\beta} t=\sum_{k=0}^{\infty}\left(\beta^{k}(x)-\beta^{k+1}(x)\right) f\left(\beta^{k}(x)\right), \quad x \in I . \tag{1.3}
\end{equation*}
$$

provided that the series converges at $x=a$ and $x=b . f$ is called β-integrable on I if the series converges at a, b for all $a, b \in I$. Clearly, if f is continuous at $s_{0} \in I$, then f is β-integrable on I.

Theorem 1.7. Let $f: I \rightarrow \mathbb{X}$ be continuous at s_{0}. Define the function

$$
\begin{equation*}
F(x)=\int_{s_{0}}^{x} f(t) d_{\beta} t, \quad x \in I . \tag{1.4}
\end{equation*}
$$

Then F is continuous at $s_{0}, D_{\beta} F(x)$ exists for all $x \in I$ and $D_{\beta} F(x)=f(x)$.

2β-Exponential Functions

In this section, we define the β-exponential functions and we study some of their properties.

Definition 2.1 (β-Exponential Functions). Assume that $p: I \rightarrow \mathbb{C}$ is a continuous function at s_{0}. We define the β-exponential functions $e_{p, \beta}(t)$ and $E_{p, \beta}(t)$ by

$$
\begin{equation*}
e_{p, \beta}(t)=\frac{1}{\prod_{k=0}^{\infty}\left[1-p\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right]} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{p, \beta}(t)=\prod_{k=0}^{\infty}\left[1+p\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right] \tag{2.2}
\end{equation*}
$$

It is worth mentioning that both products in (2.1) and (2.2) are convergent since

$$
\sum_{k=0}^{\infty}\left|p\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right|
$$

is uniformly convergent by Theorem 1.1. For the case when p is a constant function $p(t)=z, z \in \mathbb{C}$ and $\beta(t)=q t+\omega, \omega>0$ and $q \in(0,1)$, we obtain the Hahn exponential functions, see [4]. From (2.1), (2.2) we have

$$
\begin{equation*}
e_{p, \beta}(t)=\frac{1}{E_{-p, \beta}(t)} . \tag{2.3}
\end{equation*}
$$

Theorem 2.2. The β-exponential functions $e_{p, \beta}(t)$ and $E_{p, \beta}(t)$ are the unique solutions of the first order β-difference equations

$$
\begin{equation*}
D_{\beta} y(t)=p(t) y(t), \quad y\left(s_{0}\right)=1 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\beta} y(t)=p(t) y(\beta(t)), \quad y\left(s_{0}\right)=1, \tag{2.5}
\end{equation*}
$$

respectively.
Proof. It is obvious that $e_{p, \beta}\left(s_{0}\right)=E_{p, \beta}\left(s_{0}\right)=1$. We have

$$
\begin{aligned}
D_{\beta} e_{p, \beta}(t)= & \frac{e_{p, \beta}(\beta(t))-e_{p, \beta}(t)}{\beta(t)-t} \\
= & \frac{1}{\beta(t)-t}\left[\frac{1}{\prod_{k=0}^{\infty}\left(1-p\left(\beta^{k+1}(t)\right)\left(\beta^{k+1}(t)-\beta^{k+2}(t)\right)\right)}\right. \\
& \left.-\frac{1}{\prod_{k=0}^{\infty}\left(1-p\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right)}\right] \\
= & \frac{p(t)}{\prod_{k=o}^{\infty}\left(1-p\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right)}=p(t) e_{p, \beta}(t) .
\end{aligned}
$$

Similarly, we see that $E_{p, \beta}(t)$ is a solution of (2.5). Finally, to prove the uniqueness of the solution $e_{p, \beta}(t)$, let $x(t)$ be another solution of (2.4). We have

$$
D_{\beta}\left(\frac{x(t)}{e_{p, \beta}(t)}\right)=\frac{e_{p, \beta}(t) D_{\beta} x(t)-x(t) D_{\beta} e_{p, \beta}(t)}{e_{p, \beta}(t) e_{p, \beta}(\beta(t))}=0, \quad t \in I .
$$

By Lemma 1.4, $\frac{x(t)}{e_{p, \beta}(t)}$ is a constant function and $\frac{x(t)}{e_{p, \beta}(t)}=\frac{x\left(s_{0}\right)}{e_{p, \beta}\left(s_{0}\right)}=1$, i.e., $x(t)=$ $e_{p, \beta}(t)$ for all $t \in I$. Similarly $E_{p, \beta}(t)$ is the unique solution of (2.5).

Consider the non-homogeneous first order linear β-difference equation

$$
\begin{equation*}
D_{\beta} y(t)=p(t) y(t)+f(t), \quad y\left(s_{0}\right)=y_{0} \in \mathbb{X} \tag{2.6}
\end{equation*}
$$

Theorem 2.3. Let $f: I \rightarrow \mathbb{X}$ be continuous function at s_{0}. then

$$
\begin{equation*}
y(t)=e_{p, \beta}(t)\left(y_{0}+\int_{s_{0}}^{t} f(\tau) E_{-p, \beta}(\beta(\tau)) d_{\beta} \tau\right) \tag{2.7}
\end{equation*}
$$

is a solution of equation (2.6).

Proof. We have

$$
\begin{aligned}
D_{\beta} y(t)= & D_{\beta} e_{p, \beta}(t) y_{0}+D_{\beta} e_{p, \beta}(t) \int_{s_{0}}^{t} f(\tau) E_{-p, \beta}(\beta(\tau)) d_{\beta} \tau \\
& +e_{p, \beta}(\beta(t)) f(t) E_{-p, \beta}(\beta(t)) \\
= & p(t) e_{p, \beta}(t) y_{0}+p(t) e_{p, \beta}(t) \int_{s_{0}}^{t} f(\tau) E_{-p, \beta}(\beta(\tau)) d_{\beta} \tau+f(t) \\
= & p(t) y(t)+f(t) .
\end{aligned}
$$

Also, $y\left(s_{0}\right)=y_{0}$.
In the following two theorems we introduce some important properties of the β exponential function.

Theorem 2.4. Let $p: I \rightarrow \mathbb{C}$ be a continuous function at s_{0}. Then the following properties hold:
(i) $e_{p, \beta}(\beta(t))=[1+(\beta(t)-t) p(t)] e_{p, \beta}(t), \quad t \in I$,
(ii) $D_{\beta}\left(\frac{1}{e_{p, \beta}(t)}\right)=\frac{-p(t)}{e_{p, \beta}(\beta(t))}$,
(iii) $\frac{1}{e_{p, \beta}(t)}$ is the unique solution of the first order β-difference equation

$$
\begin{equation*}
D_{\beta} y(t)=\frac{-p(t) e_{p, \beta}(t)}{e_{p, \beta}(\beta(t))} y(t), \quad y\left(s_{0}\right)=1 . \tag{2.8}
\end{equation*}
$$

Proof. (i) From the definition of D_{β}, we have

$$
\begin{aligned}
e_{p, \beta}(\beta(t)) & =e_{p, \beta}(t)+(\beta(t)-t) D_{\beta} e_{p, \beta}(t) \\
& =e_{p, \beta}(t)[1+(\beta(t)-t) p(t)] .
\end{aligned}
$$

(ii) By Theorem 1.3 (ii), we get

$$
D_{\beta}\left(\frac{1}{e_{p, \beta}(t)}\right)=\frac{-D_{\beta} e_{p, \beta}(t)}{e_{p, \beta}(t) e_{p, \beta}(\beta(t))}=\frac{-p(t)}{e_{p, \beta}(\beta(t))} .
$$

(iii) We can see that

$$
\frac{1}{e_{p, \beta}\left(s_{0}\right)}=1
$$

By part (ii), we get $\frac{1}{e_{p, \beta}(t)}$ is a solution of (2.8). To show that the solution is unique, suppose that $x(t)$ is another solution of (2.8), then

$$
\begin{aligned}
D_{\beta}\left(x(t) e_{p, \beta}(t)\right) & =x(t) D_{\beta} e_{p, \beta}(t)+D_{\beta} x(t) e_{p, \beta}(\beta(t)) \\
& =x(t) p(t) e_{p, \beta}(t)-\frac{p(t) e_{p, \beta}(t)}{e_{p, \beta}(\beta(t))} x(t) e_{p, \beta}(\beta(t))=0 .
\end{aligned}
$$

Hence, $x(t) e_{p, \beta}(t)=x\left(s_{0}\right) e_{p, \beta}\left(s_{0}\right)=1$. Therefore, $x(t)=\frac{1}{e_{p, \beta}(t)}$.

Theorem 2.5. Suppose $p, q: I \rightarrow \mathbb{C}$ are continuous functions at s_{0}. Then the following properties hold:
(i) $\frac{1}{e_{p, \beta}(t)}=e_{\frac{-p(t)}{1-p(t)(t-\beta(t), \beta}}(t)$,
(ii) $e_{p, \beta}(t) e_{q, \beta}(t)=e_{[p(t)+(\beta(t)-t) p(t) q(t)+q(t)], \beta}(t)$,
(iii) $\frac{e_{p, \beta}(t)}{e_{q, \beta}(t)}=e_{\frac{p(t)-q(t)}{1-q(t)(t-\beta(t)),}, \beta}(t)$.

Proof. (i) Clearly, $e_{\frac{-p(t)}{1-p(t)(t-\beta(t))}, \beta}(t)$ is a solution of equation (2.8), then $\frac{1}{e_{p, \beta}(t)}=$ $e_{\frac{-p(t)}{1-p(t)(t-\beta(t), \beta}}(t)$.
(ii) We have

$$
\begin{aligned}
D_{\beta}\left(e_{p, \beta}(t) e_{q, \beta}(t)\right) & =D_{\beta} e_{p, \beta}(t) e_{q, \beta}(t)+e_{p, \beta}(\beta(t)) D_{\beta} e_{q, \beta}(t) \\
& =p(t) e_{p, \beta}(t) e_{q, \beta}(t)+q(t) e_{p, \beta}(\beta(t)) e_{q, \beta}(t) \\
& =p(t) e_{p, \beta}(t) e_{q, \beta}(t)+q(t) e_{q, \beta}(t)[1+(\beta(t)-t) p(t)] e_{p, \beta}(t) \\
& =[p(t)+(\beta(t)-t) p(t) q(t)+q(t)] e_{p, \beta}(t) e_{q, \beta}(t) .
\end{aligned}
$$

(iii) This is a consequence of (i) and (ii).

The proof is complete.
Example 2.6. Let $p(t)=\frac{2}{t}$ and $\beta(t)=\frac{1}{2} t+\frac{1}{2}$, for $t \in[1,2]$. The unique fixed point of the function β is $s_{0}=1$. One can check that

$$
e_{\frac{2}{t}, \frac{1}{2} t+\frac{1}{2}}(t)=\frac{1}{\prod_{k=0}^{\infty}\left[1-\frac{t-1}{t-1+2^{k}}\right]} .
$$

Clearly, $e_{\frac{2}{t}, \frac{1}{2} t+\frac{1}{2}}(1)=1$. So, $e_{\frac{2}{t}, \frac{1}{2} t+\frac{1}{2}}(t)$ is the unique solution of the equation

$$
D_{\beta} y(t)=\frac{2}{t} y(t), \quad y(1)=1 .
$$

Example 2.7. Let $p(t)=t(1+i)$ and $\beta(t)=\frac{1}{2} t$, for $t \in[0,2]$. The unique fixed point of the function β is $s_{0}=0$. Clearly, $e_{t(1+i), \frac{1}{2} t}(0)=1$. One can check that

$$
e_{t(1+i), \frac{1}{2} t}(t)=\frac{1}{\prod_{k=0}^{\infty}\left[1-\frac{t^{2}(1+i)}{2^{2 k+1}}\right]}
$$

is the unique solution of the equation $D_{\beta} y(t)=t(1+i) y(t), \quad y(0)=1$.

3β-Trigonometric Functions

In this Section we define the β-trigonometric functions and study some of their properties.

Definition 3.1 (β-Trigonometric Functions). We define the β-trigonometric functions by

$$
\begin{align*}
\cos _{p, \beta}(t) & =\frac{e_{i p, \beta}(t)+e_{-i p, \beta}(t)}{2} \tag{3.1}\\
\sin _{p, \beta}(t) & =\frac{e_{i p, \beta}(t)-e_{-i p, \beta}(t)}{2 i} \tag{3.2}\\
\operatorname{Cos}_{p, \beta}(t) & =\frac{E_{i p, \beta}(t)+E_{-i p, \beta}(t)}{2} \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Sin}_{p, \beta}(t)=\frac{E_{i p, \beta}(t)-E_{-i p, \beta}(t)}{2 i} \tag{3.4}
\end{equation*}
$$

Simple calculations show that the β-trigonometric functions satisfy the relations in the following theorem.

Theorem 3.2. For all $t \in I$. The following relations are true:
(1) $D_{\beta} \sin _{p, \beta}(t)=p(t) \cos _{p, \beta}(t)$,
(2) $D_{\beta} \cos _{p, \beta}(t)=-p(t) \sin _{p, \beta}(t)$,
(3) $\cos _{p, \beta}(t)+i \sin _{p, \beta}(t)=e_{i p, \beta}(t)$,
(4) $\cos _{p, \beta}^{2}(t)+\sin _{p, \beta}^{2}(t)=e_{i p, \beta}(t) e_{-i p, \beta}(t) \quad\left(\right.$ at $\left.t=s_{0}, \cos _{p, \beta}^{2}(t)+\sin _{p, \beta}^{2}(t)=1\right)$,
(5) $D_{\beta} \operatorname{Sin}_{p, \beta}(t)=p(t) \operatorname{Cos}_{p, \beta}(\beta(t))$,
(6) $D_{\beta} \operatorname{Cos}_{p, \beta}(t)=-p(t) \operatorname{Sin}_{p, \beta}(\beta(t))$,
(7) $\operatorname{Sin}_{p, \beta}^{2}(t)+\operatorname{Cos}_{p, \beta}^{2}(t)=E_{i p, \beta}(t) E_{-i p, \beta}(t)$,
(8) $\operatorname{Cos}_{p, \beta}(t)+i \operatorname{Sin}_{p, \beta}(t)=E_{i p, \beta}(t)$,
(9) $\sin _{p, \beta}(t) \operatorname{Sin}_{p, \beta}(t)+\cos _{p, \beta}(t) \operatorname{Cos}_{p, \beta}(t)=1$,
(10) $\sin _{p, \beta}(t) \operatorname{Cos}_{p, \beta}(t)-\cos _{p, \beta}(t) \operatorname{Sin}_{p, \beta}(t)=0$.

In the following theorem it can be easily seen that the β-trigonometric functions are solutions of the second order β-difference equations.

Theorem 3.3. Let $p: I \rightarrow \mathbb{C}$ be a continuous function at s_{0}. Then $\cos _{p, \beta}(t), \sin _{p, \beta}(t)$, $\operatorname{Cos}_{p, \beta}(t)$ and $\operatorname{Sin}_{p, \beta}(t)$ are solutions of the following second order β-difference equations, respectively.
i) $D_{\beta}^{2} x(t)=-p^{2}(t) x(t)-D_{\beta} p(t) \sin _{p, \beta}(\beta(t))$,

$$
x\left(s_{0}\right)=1, D_{\beta} x\left(s_{0}\right)=0 .
$$

ii) $D_{\beta}^{2} x(t)=-p^{2}(t) x(t)+D_{\beta} p(t) \cos _{p, \beta}(\beta(t))$,

$$
x\left(s_{0}\right)=0, D_{\beta} x\left(s_{0}\right)=p\left(s_{0}\right) .
$$

iii) $D_{\beta}^{2} x(t)=-p^{2}(\beta(t)) \frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t} x\left(\beta^{2}(t)\right)-D_{\beta} p(t) \operatorname{Sin}_{p, \beta}(\beta(t))$,

$$
x\left(s_{0}\right)=1, D_{\beta} x\left(s_{0}\right)=0 .
$$

iv) $D_{\beta}^{2} x(t)=-p^{2}(\beta(t)) \frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t} x\left(\beta^{2}(t)\right)+D_{\beta} p(t) \operatorname{Cos}_{p, \beta}(\beta(t))$,

$$
x\left(s_{0}\right)=0, D_{\beta} x\left(s_{0}\right)=p\left(s_{0}\right)
$$

Corollary 3.4. Let $z \in \mathbb{C}$. Then $\cos _{z_{\beta}}(t), \sin _{z_{, \beta}}(t), \operatorname{Cos}_{z_{, \beta}}(t)$ and $\operatorname{Sin}_{z_{, \beta}}(t)$ are solutions of the following second order β-difference equations, respectively.
i) $D_{\beta}^{2} x(t)=-z^{2} x(t), \quad x\left(s_{0}\right)=1, D_{\beta} x\left(s_{0}\right)=0$.
ii) $D_{\beta}^{2} x(t)=-z^{2} x(t), \quad x\left(s_{0}\right)=0, D_{\beta} x\left(s_{0}\right)=z$.
iii) $D_{\beta}^{2} x(t)=-z^{2} \frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t} x\left(\beta^{2}(t)\right), \quad x\left(s_{0}\right)=1, D_{\beta} x\left(s_{0}\right)=0$.
iv) $D_{\beta}^{2} x(t)=-z^{2} \frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t} x\left(\beta^{2}(t)\right), \quad x\left(s_{0}\right)=0, D_{\beta} x\left(s_{0}\right)=z$.

Example 3.5. Let $\beta(t)=q t+\omega, q \in(0,1), \omega>0$, and let $p(t)=z, z \in \mathbb{C}$ be a constant. Then, $s_{0}=\frac{\omega}{1-q}$ and $\frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t}=q$. Consequently, $\cos _{z, \beta}(t), \sin _{z_{, \beta}}(t)$, $\operatorname{Cos}_{z, \beta}(t)$ and $\operatorname{Sin}_{z_{, \beta}}(t)$ are solutions of the following second order q, ω-difference equations, respectively.
i) $D_{q, \omega}^{2} x(t)=-z^{2} x(t), \quad x\left(s_{0}\right)=1, D_{q, \omega} x\left(s_{0}\right)=0$.
ii) $D_{q, \omega}^{2} x(t)=-z^{2} x(t), \quad x\left(s_{0}\right)=0, D_{q, \omega} x\left(s_{0}\right)=z$.
iii) $D_{q, \omega}^{2} x(t)=-z^{2} q x\left(q^{2} t+\omega(1+q)\right), \quad x\left(s_{0}\right)=1, D_{q, \omega} x\left(s_{0}\right)=0$.
iv) $D_{q, \omega}^{2} x(t)=-z^{2} q x\left(q^{2} t+\omega(1+q)\right), \quad x\left(s_{0}\right)=0, D_{q, \omega} x\left(s_{0}\right)=z$.

Example 3.6. Let $\beta(t)=q t, q \in(0,1)$, and $p(t)=z, z \in \mathbb{C}$ be a constant. Then, $s_{0}=0$ and $\frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t}=q$. Consequently, $\cos _{z, \beta}(t), \sin _{z, \beta}(t), \operatorname{Cos}_{z, \beta}(t)$ and $\operatorname{Sin}_{z, \beta}(t)$ are solutions of the following second order q, ω-difference equations, respectively.
i) $D_{q}^{2} x(t)=-z^{2} x(t), \quad x\left(s_{0}\right)=1, D_{q} x(0)=0$.
ii) $D_{q}^{2} x(t)=-z^{2} x(t), \quad x\left(s_{0}\right)=0, D_{q} x(0)=z$.
iii) $D_{q}^{2} x(t)=-z^{2} q x\left(q^{2} t\right), \quad x\left(s_{0}\right)=1, D_{q} x(0)=0$.
iv) $D_{q}^{2} x(t)=-z^{2} q x\left(q^{2} t\right), \quad x\left(s_{0}\right)=0, D_{q} x(0)=z$.

4β-Hyperbolic Functions

In this Section we define the β-hyperbolic functions and study some of their properties.
Definition 4.1 (β-Hyperbolic Functions). We define the β-hyperbolic functions by

$$
\begin{align*}
\cosh _{p, \beta}(t) & =\frac{e_{p, \beta}(t)+e_{-p, \beta}(t)}{2} \tag{4.1}\\
\sinh _{p, \beta}(t) & =\frac{e_{p, \beta}(t)-e_{-p, \beta}(t)}{2} \tag{4.2}\\
\operatorname{Cosh}_{p, \beta}(t) & =\frac{E_{p, \beta}(t)+E_{-p, \beta}(t)}{2} \tag{4.3}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Sinh}_{p, \beta}(t)=\frac{E_{p, \beta}(t)-E_{-p, \beta}(t)}{2} \tag{4.4}
\end{equation*}
$$

The following theorem introduces some properties of the β-hyperbolic functions. Its proof is straightforward.

Theorem 4.2. The β-hyperbolic functions satisfy the following properties:
(1) $D_{\beta} \cosh _{p, \beta}(t)=p(t) \sinh _{p, \beta}(t)$,
(2) $D_{\beta} \sinh _{p, \beta}(t)=p(t) \cosh _{p, \beta}(t)$,
(3) $\cosh _{p, \beta}^{2}(t)-\sinh _{p, \beta}^{2}(t)=e_{p, \beta}(t) e_{-p, \beta}(t)$ $\left(\right.$ at $\left.t=s_{0}, \cosh _{p, \beta}^{2}(t)-\sinh _{p, \beta}^{2}(t)=1\right)$,
(4) $\cosh _{p, \beta}(t)+\sinh _{p, \beta}(t)=e_{p, \beta}(t)$,
(5) $\cosh _{p, \beta}(t)-\sinh _{p, \beta}(t)=e_{-p, \beta}(t)$,
(6) $D_{\beta} \operatorname{Cosh}_{p, \beta}(t)=p(t) \operatorname{Sinh}_{p, \beta}(\beta(t))$,
(7) $D_{\beta} \operatorname{Sinh}_{p, \beta}(t)=p(t) \operatorname{Cosh}_{p, \beta}(\beta(t))$,
(8) $\operatorname{Cosh}_{p, \beta}^{2}(t)-\operatorname{Sinh}_{p, \beta}^{2}(t)=E_{p, \beta}(t) E_{-p, \beta}(t)$,
(9) $\operatorname{Cosh}_{p, \beta}(t)+\operatorname{Sinh}_{p, \beta}(t)=E_{p, \beta}(t)$,
(10) $\operatorname{Cosh}_{p, \beta}(t)-\operatorname{Sinh}_{p, \beta}(t)=E_{-p, \beta}(t)$.

In the following Theorem, simple calculations show that the β-hyperbolic functions are solutions of second order β-difference equations.

Theorem 4.3. Let $p: I \rightarrow \mathbb{C}$ be a continuous function at s_{0}. Then $\cosh _{p, \beta}(t), \sinh _{p, \beta}(t)$, $\operatorname{Cosh}_{p, \beta}(t)$ and $\operatorname{Sinh}_{p, \beta}(t)$ are solutions of the following second order β-difference equations, respectively.
i) $D_{\beta}^{2} x(t)=p^{2}(t) x(t)+D_{\beta} p(t) \sinh _{p, \beta}(\beta(t))$,

$$
x\left(s_{0}\right)=1, D_{\beta} x\left(s_{0}\right)=0 .
$$

ii) $D_{\beta}^{2} x(t)=p^{2}(t) x(t)+D_{\beta} p(t) \cosh _{p, \beta}(\beta(t))$,

$$
x\left(s_{0}\right)=0, D_{\beta} x\left(s_{0}\right)=p\left(s_{0}\right) .
$$

iii) $D_{\beta}^{2} x(t)=p^{2}(\beta(t)) \frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t} x\left(\beta^{2}(t)\right)+D_{\beta} p(t) \operatorname{Sinh}_{p, \beta}(\beta(t))$,

$$
x\left(s_{0}\right)=1, D_{\beta} x\left(s_{0}\right)=0 .
$$

iv) $D_{\beta}^{2} x(t)=p^{2}(\beta(t)) \frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t} x\left(\beta^{2}(t)\right)+D_{\beta} p(t) \operatorname{Cosh}_{p, \beta}(\beta(t))$,

$$
x\left(s_{0}\right)=0, D_{\beta} x\left(s_{0}\right)=p\left(s_{0}\right) .
$$

Corollary 4.4. Let $z \in \mathbb{C}$. Then $\cosh _{z_{, \beta}}(t), \sinh _{z, \beta}(t), \operatorname{Cosh}_{z_{, \beta}}(t)$ and $\operatorname{Sinh}_{z_{, \beta}}(t)$ are solutions of the following second order β-difference equations, respectively.
i) $D_{\beta}^{2} x(t)=z^{2} x(t), \quad x\left(s_{0}\right)=1, D_{\beta} x\left(s_{0}\right)=0$.
ii) $D_{\beta}^{2} x(t)=z^{2} x(t), \quad x\left(s_{0}\right)=0, D_{\beta} x\left(s_{0}\right)=z$.
iii) $D_{\beta}^{2} x(t)=z^{2} \frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t} x\left(\beta^{2}(t)\right), \quad x\left(s_{0}\right)=1, D_{\beta} x\left(s_{0}\right)=0$.
iv) $D_{\beta}^{2} x(t)=z^{2} \frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t} x\left(\beta^{2}(t)\right), \quad x\left(s_{0}\right)=0, D_{\beta} x\left(s_{0}\right)=z$.

Example 4.5. Let $\beta(t)=q t+\omega, q \in(0,1), \omega>0$, and let $p(t)=z, z \in \mathbb{C}$ be a constant. Then, $\frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t}=q$. Consequently, $\cosh _{z, \beta}(t), \sinh _{z, \beta}(t), \operatorname{Cosh}_{z, \beta}(t)$ and $\operatorname{Sinh}_{z, \beta}(t)$ are solutions of the following second order q, ω-difference equations, respectively.
i) $D_{q, \omega}^{2} x(t)=z^{2} x(t), \quad x\left(s_{0}\right)=1, D_{q, \omega} x\left(s_{0}\right)=0$.
ii) $D_{q, \omega}^{2} x(t)=z^{2} x(t), \quad x\left(s_{0}\right)=0, D_{q, \omega} x\left(s_{0}\right)=z$.
iii) $D_{q, \omega}^{2} x(t)=z^{2} q x\left(q^{2} t+\omega(1+q)\right), \quad x\left(s_{0}\right)=1, D_{q, \omega} x\left(s_{0}\right)=0$.
iv) $D_{q, \omega}^{2} x(t)=z^{2} q x\left(q^{2} t+\omega(1+q)\right), \quad x\left(s_{0}\right)=0, D_{q, \omega} x\left(s_{0}\right)=z$.

Example 4.6. Let $\beta(t)=q t, q \in(0,1)$ and $p(t)=z, z \in \mathbb{C}$ be a constant. Then, $\frac{\beta^{2}(t)-\beta(t)}{\beta(t)-t}=q$. Consequently, $\cosh _{z, \beta}(t), \sinh _{z, \beta}(t), \operatorname{Cosh}_{z, \beta}(t)$ and $\operatorname{Sinh}_{z, \beta}(t)$ are solutions of the following second order q-difference equations, respectively.
i) $D_{q}^{2} x(t)=z^{2} x(t), \quad x\left(s_{0}\right)=1, D_{q} x(0)=0$.
ii) $D_{q}^{2} x(t)=z^{2} x(t), \quad x\left(s_{0}\right)=0, D_{q} x(0)=z$.
iii) $D_{q}^{2} x(t)=z^{2} q x\left(q^{2} t\right), \quad x\left(s_{0}\right)=1, D_{q} x(0)=0$.
iv) $D_{q}^{2} x(t)=z^{2} q x\left(q^{2} t\right), \quad x\left(s_{0}\right)=0, D_{q} x(0)=z$.

Conclusion

In this paper, we defined the β-exponential functions and proved that they are a unique solutions for the first order β-difference equations. Also, the β-trigonometric functions and their properties were introduced and that they satisfy the second order β-difference equations. Finally, the β-hyperbolic functions and their properties were introduced.

Acknowledgments

The authors sincerely thank the referees for their valuable suggestions and comments.

References

[1] K. A. Aldwoah, Generalized time scales and the associated difference equations, Ph.D. thesis, Cairo University, (2009).
[2] K. A. Aldwoah, A. B. Malinowska and D. F. M. Torres, The power quantum calculus and variational problems, Dyn. Cont. Disc. Impul. Syst. 19, (2012), pp. 93-116.
[3] R. Almeida and D. F. M. Torres, Non-differentiable variational principles in terms of a quantum operator, Math. Methods Appl. Sci. 34, (2011), pp. 2231-2241. Available at arXiv:1106. 3831.
[4] M. H. Annaby, A. E. Hamza and K. A. Aldwoah, Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl. 154, (2012), pp. 133-153.
[5] M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and Equations, Springer, (2012).
[6] T. J. Auch, Development and Application of Difference and Fractional Calculus on Discrete Time Scales. Ph.D. thesis, University of Nebraska-Lincoln (2013).
[7] G. Bangerezako, Variational q-calculus. J. Math. Anal. Appl. 289, 2, (2004), pp. 650-665.
[8] A. M. C. Brito Da Cruz, Symmetric quantum calculus. Ph. D. Thesis, Aveiro University, 2012.
[9] A. M. C. Brito Da Cruz, N. Martins, D. F. M. Torres, Hahn's symmetric quantum variational calculus, Numer. Algebra Control Optim., (2012). Available at arXiv:1209.1530v1.
[10] J. Cresson, G. S. F. Frederico and D. F. M. Torres, Constants of motion for nondifferentiable quantum variational problems, Topol. Methods Nonl. Anal. 33, 2, (2009), pp. 217-231. Available at aXiv:0805.070
[11] W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nachr. 2, (1949), pp. 4-34.
[12] A. E. Hamza and S. M. Ahmed, Existence and uniqueness of solutions of Hahn difference equations. Adv. Differ. Equ. 2013, 316 (2013).
[13] A. E. Hamza and S. M. Ahmed, Theory of linear Hahn difference equations. J. Adv. Math. 4, 2, (2013).
[14] A. E. Hamza, A. M. Sarhan, E. M. Shehata and K. A. Aldwoah, A general quantum difference calculus. Adv. Differ. Equ. 2015:182 (2015). DOI: 10.1186/s13662-015-0518-3
[15] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, (2002).
[16] A. Lavagno and P. N. Swamy, q-Deformed structures and nonextensive statistics, a comparative study, Phys. A 305, 1, (2002), pp. 310-315.
[17] A. B. Malinowska and D. F. M. Torres, The Hahn quantum variational calculus, J. Optim. Theory Appl. 147, (2010), pp. 419-442.
[18] D. N. Page, Information in black hole radiation, Phys. Rev. Lett. 71, 23, (1993), pp. 3743-3746.
[19] D. Youm, q-deformed conformal quantum mechanics, Phys. Rev. D 62, 095009, 5, (2000).

