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Abstract

In this paper, we present the β-exponential and β-trigonometric functions based
on the general quantum difference operator Dβ defined by

Dβf(t) =
f(β(t))− f(t)

β(t)− t
, β(t) 6= t,

which are the solutions of the first and second order β-difference equations, respec-
tively. Here, β is a strictly increasing continuous function defined on an interval
I ⊆ R. Furthermore, we establish many properties of these functions. Finally, the
β-hyperbolic functions and their properties are introduced.
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1 Introduction
Quantum calculus is recently subject to an increase number of investigations, due to its
applications. It substitutes the usual derivative by a difference operator, which allows
one to deal with sets of non-differentiable functions [3, 10]. Quantum calculus has
applications in many areas, for instance calculus of variations, economical systems, and
several fields of physics such as black holes, quantum mechanics, nuclear and high
energy physics [7–9, 16–19]. In [14] we have constructed a general quantum difference
operator Dβ , by considering a strictly increasing continuous function β : I → I , where
I is an interval of R containing a fixed point s0 of β. The β-difference operator is
defined by

Dβf(t) =


f(β(t))− f(t)

β(t)− t
, t 6= s0,

f ′(s0), t = s0.

where f is an arbitrary function defined on I , and is differentiable at t = s0 in the
usual sense. As particular cases, we obtain the Hahn difference operator Dq,ω when
β(t) = qt + ω, q ∈ (0, 1), ω > 0 are fixed numbers, the Jackson q-difference operator
Dq when β(t) = qt, q ∈ (0, 1), the n, q-power quantum difference operator when
β(t) = qtn, q ∈ (0, 1), n is a fixed odd positive integer and the forward difference
operator ∆a,b when β(t) = at + b, a ≥ 1, b ≥ 0 and a + b > 1. For more details about
these operators we refer the reader to [1, 2, 4–6, 11–13, 15].

In a first step towards the development of the general quantum difference calculus,
in [14], we considered our function β when it has only one fixed point s0 ∈ I and
satisfies the following condition

(t− s0)(β(t)− t) ≤ 0 for all t ∈ I,

and gave a rigorous analysis of the calculus based on Dβ and its associated integral
operator. Some basic properties of such a calculus were stated and proved. For instance,
the chain rule, Leibniz’ formula, the mean value theorem and the fundamental theorem
of β-calculus.

This paper is organized as follows. In Section 2, the β-exponential functions are
defined and some of their properties are introduced. Also, we prove that they are
the unique solutions of the first order β-difference equations. In Section 3, the β-
trigonometric functions are presented and their properties are established. In Section
4, the β-hyperbolic functions are exhibited and their properties are shown. Throughout
the paper X is a Banach space, I is an interval of R containing only one fixed point s0
of β and

βk(t) := β ◦ β ◦ · · · ◦ β︸ ︷︷ ︸
k−times

(t).

We need the following results from [14] to prove our main results.
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Theorem 1.1. If f : I → X is continuous at s0, then the series
∑∞

k=0
||(βk(t) −

βk+1(t))f(βk(t))|| is uniformly convergent on every compact interval J ⊆ I containing
s0.

Definition 1.2. For a function f : I → X, we define the β-difference operator of f as

Dβf(t) =


f(β(t))− f(t)

β(t)− t
, t 6= s0,

f ′(s0), t = s0

provided that f ′ exists at s0. In this case, we say that Dβf(t) is the β-derivative of f at
t. We say that f is β-differentiable on I if f ′(s0) exists.

Theorem 1.3. Assume that f : I → X and g : I → R are β-differentiable at t ∈ I .
Then:

(i) The product fg : I → X is β-differentiable at t and

Dβ(fg)(t) = (Dβf(t))g(t) + f(β(t))Dβg(t)

= (Dβf(t))g(β(t)) + f(t)Dβg(t).

(ii) f/g is β-differentiable at t and

Dβ

(
f/g

)
(t) =

(Dβf(t))g(t)− f(t)Dβg(t)

g(t)g(β(t))
,

provided that g(t)g(β(t)) 6= 0.

Lemma 1.4. Let f : I → X be β-differentiable and Dβf(t) = 0 for all t ∈ I , then
f(t) = f(s0) for all t ∈ I .

Theorem 1.5. Assume f : I → X is continuous at s0. Then the function F defined by

F (t) =
∞∑
k=0

(
βk(t)− βk+1(t)

)
f(βk(t)), t ∈ I, (1.1)

is a β-antiderivative of f with F (s0) = 0. Conversely, a β-antiderivative F of f van-
ishing at s0 is given by the formula (1.1).

Definition 1.6. Let f : I → X and a, b ∈ I . We define the β-integral of f from a to b
by ∫ b

a

f(t)dβt =

∫ b

s0

f(t)dβt−
∫ a

s0

f(t)dβt, (1.2)
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where ∫ x

s0

f(t)dβt =
∞∑
k=0

(
βk(x)− βk+1(x)

)
f(βk(x)), x ∈ I. (1.3)

provided that the series converges at x = a and x = b. f is called β-integrable on I if
the series converges at a, b for all a, b ∈ I . Clearly, if f is continuous at s0 ∈ I , then f
is β-integrable on I .

Theorem 1.7. Let f : I → X be continuous at s0. Define the function

F (x) =

∫ x

s0

f(t)dβt, x ∈ I. (1.4)

Then F is continuous at s0, DβF (x) exists for all x ∈ I and DβF (x) = f(x).

2 β-Exponential Functions

In this section, we define the β-exponential functions and we study some of their prop-
erties.

Definition 2.1 (β-Exponential Functions). Assume that p : I → C is a continuous
function at s0. We define the β-exponential functions ep,β(t) and Ep,β(t) by

ep,β(t) =
1∏∞

k=0

[
1− p(βk(t))(βk(t)− βk+1(t))

] (2.1)

and

Ep,β(t) =
∞∏
k=0

[
1 + p(βk(t))(βk(t)− βk+1(t))

]
, (2.2)

It is worth mentioning that both products in (2.1) and (2.2) are convergent since

∞∑
k=0

|p(βk(t))(βk(t)− βk+1(t))|

is uniformly convergent by Theorem 1.1. For the case when p is a constant function
p(t) = z, z ∈ C and β(t) = qt + ω, ω > 0 and q ∈ (0, 1), we obtain the Hahn
exponential functions, see [4]. From (2.1), (2.2) we have

ep,β(t) =
1

E−p,β(t)
. (2.3)
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Theorem 2.2. The β-exponential functions ep,β(t) and Ep,β(t) are the unique solutions
of the first order β-difference equations

Dβy(t) = p(t)y(t), y(s0) = 1, (2.4)

and
Dβy(t) = p(t)y(β(t)), y(s0) = 1, (2.5)

respectively.

Proof. It is obvious that ep,β(s0) = Ep,β(s0) = 1. We have

Dβep,β(t) =
ep,β(β(t))− ep,β(t)

β(t)− t

=
1

β(t)− t

[ 1∏∞
k=0(1− p(βk+1(t))(βk+1(t)− βk+2(t)))

− 1∏∞
k=0(1− p(βk(t))(βk(t)− βk+1(t)))

]
=

p(t)∏∞
k=o(1− p(βk(t))(βk(t)− βk+1(t)))

= p(t)ep,β(t).

Similarly, we see that Ep,β(t) is a solution of (2.5). Finally, to prove the uniqueness of
the solution ep,β(t), let x(t) be another solution of (2.4). We have

Dβ

(
x(t)

ep,β(t)

)
=
ep,β(t)Dβx(t)− x(t)Dβep,β(t)

ep,β(t)ep,β(β(t))
= 0, t ∈ I.

By Lemma 1.4,
x(t)

ep,β(t)
is a constant function and

x(t)

ep,β(t)
=

x(s0)

ep,β(s0)
= 1, i.e., x(t) =

ep,β(t) for all t ∈ I . Similarly Ep,β(t) is the unique solution of (2.5).

Consider the non-homogeneous first order linear β-difference equation

Dβy(t) = p(t)y(t) + f(t), y(s0) = y0 ∈ X. (2.6)

Theorem 2.3. Let f : I → X be continuous function at s0. then

y(t) = ep,β(t)
(
y0 +

∫ t

s0

f(τ)E−p,β(β(τ))dβτ
)

(2.7)

is a solution of equation (2.6).
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Proof. We have

Dβy(t) = Dβep,β(t)y0 +Dβep,β(t)

∫ t

s0

f(τ)E−p,β(β(τ))dβτ

+ ep,β(β(t))f(t)E−p,β(β(t))

= p(t)ep,β(t)y0 + p(t)ep,β(t)

∫ t

s0

f(τ)E−p,β(β(τ))dβτ + f(t)

= p(t)y(t) + f(t).

Also, y(s0) = y0.

In the following two theorems we introduce some important properties of the β-
exponential function.

Theorem 2.4. Let p : I → C be a continuous function at s0. Then the following
properties hold:

(i) ep,β(β(t)) = [1 + (β(t)− t)p(t)]ep,β(t), t ∈ I ,

(ii) Dβ(
1

ep,β(t)
) =

−p(t)
ep,β(β(t))

,

(iii)
1

ep,β(t)
is the unique solution of the first order β-difference equation

Dβy(t) =
−p(t)ep,β(t)

ep,β(β(t))
y(t), y(s0) = 1. (2.8)

Proof. (i) From the definition of Dβ , we have

ep,β(β(t)) = ep,β(t) + (β(t)− t)Dβep,β(t)

= ep,β(t)[1 + (β(t)− t)p(t)].

(ii) By Theorem 1.3 (ii), we get

Dβ(
1

ep,β(t)
) =

−Dβep,β(t)

ep,β(t)ep,β(β(t))
=
−p(t)

ep,β(β(t))
.

(iii) We can see that
1

ep,β(s0)
= 1.
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By part (ii), we get
1

ep,β(t)
is a solution of (2.8). To show that the solution is

unique, suppose that x(t) is another solution of (2.8), then

Dβ(x(t)ep,β(t)) = x(t)Dβep,β(t) +Dβx(t)ep,β(β(t))

= x(t)p(t)ep,β(t)−
p(t)ep,β(t)

ep,β(β(t))
x(t)ep,β(β(t)) = 0.

Hence, x(t)ep,β(t) = x(s0)ep,β(s0) = 1. Therefore, x(t) =
1

ep,β(t)
.

Theorem 2.5. Suppose p, q : I → C are continuous functions at s0. Then the following
properties hold:

(i)
1

ep,β(t)
= e −p(t)

1−p(t)(t−β(t)) ,β
(t),

(ii) ep,β(t)eq,β(t) = e[p(t)+(β(t)−t)p(t)q(t)+q(t)],β(t),

(iii)
ep,β(t)

eq,β(t)
= e p(t)−q(t)

1−q(t)(t−β(t)) ,β
(t).

Proof. (i) Clearly, e −p(t)
1−p(t)(t−β(t)) ,β

(t) is a solution of equation (2.8), then
1

ep,β(t)
=

e −p(t)
1−p(t)(t−β(t)) ,β

(t).

(ii) We have

Dβ

(
ep,β(t)eq,β(t)

)
= Dβep,β(t)eq,β(t) + ep,β(β(t))Dβeq,β(t)

= p(t)ep,β(t)eq,β(t) + q(t)ep,β(β(t))eq,β(t)

= p(t)ep,β(t)eq,β(t) + q(t)eq,β(t)[1 + (β(t)− t)p(t)]ep,β(t)

= [p(t) + (β(t)− t)p(t)q(t) + q(t)]ep,β(t)eq,β(t).

(iii) This is a consequence of (i) and (ii).
The proof is complete.

Example 2.6. Let p(t) =
2

t
and β(t) =

1

2
t +

1

2
, for t ∈ [1, 2]. The unique fixed point

of the function β is s0 = 1. One can check that

e 2
t
, 1
2
t+ 1

2
(t) =

1∏∞
k=0[1−

t−1
t−1+2k

]
.

Clearly, e 2
t
, 1
2
t+ 1

2
(1) = 1. So, e 2

t
, 1
2
t+ 1

2
(t) is the unique solution of the equation

Dβy(t) =
2

t
y(t), y(1) = 1.
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Example 2.7. Let p(t) = t(1 + i) and β(t) =
1

2
t, for t ∈ [0, 2]. The unique fixed point

of the function β is s0 = 0. Clearly, et(1+i), 1
2
t(0) = 1. One can check that

et(1+i), 1
2
t(t) =

1∏∞
k=0

[
1− t2(1 + i)

22k+1

] ,
is the unique solution of the equation Dβy(t) = t(1 + i)y(t), y(0) = 1.

3 β-Trigonometric Functions
In this Section we define the β-trigonometric functions and study some of their proper-
ties.

Definition 3.1 (β-Trigonometric Functions). We define the β-trigonometric functions
by

cosp,β(t) =
eip,β(t) + e−ip,β(t)

2
, (3.1)

sinp,β(t) =
eip,β(t)− e−ip,β(t)

2i
, (3.2)

Cosp,β(t) =
Eip,β(t) + E−ip,β(t)

2
, (3.3)

and

Sinp,β(t) =
Eip,β(t)− E−ip,β(t)

2i
. (3.4)

Simple calculations show that the β-trigonometric functions satisfy the relations in
the following theorem.

Theorem 3.2. For all t ∈ I . The following relations are true:

(1) Dβ sinp,β(t) = p(t)cosp,β(t),

(2) Dβ cosp,β(t) = −p(t)sinp,β(t),

(3) cosp,β(t) + isinp,β(t) = eip,β(t),

(4) cos2p,β(t) + sin2
p,β

(t) = eip,β(t)e−ip,β(t) (at t = s0, cos2p,β(t) + sin2
p,β

(t) = 1),

(5) Dβ Sinp,β(t) = p(t)Cosp,β(β(t)),

(6) Dβ Cosp,β(t) = −p(t)Sinp,β(β(t)),

(7) Sin2
p,β

(t) + Cos2p,β(t) = Eip,β(t)E−ip,β(t),
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(8) Cosp,β(t) + iSinp,β(t) = Eip,β(t),

(9) sinp,β(t)Sinp,β(t) + cosp,β(t)Cosp,β(t) = 1,

(10) sinp,β(t)Cosp,β(t)− cosp,β(t)Sinp,β(t) = 0.

In the following theorem it can be easily seen that the β-trigonometric functions are
solutions of the second order β-difference equations.

Theorem 3.3. Let p : I → C be a continuous function at s0. Then cosp,β(t), sinp,β(t),
Cosp,β(t) and Sinp,β(t) are solutions of the following second order β-difference equa-
tions, respectively.

i) D2
β x(t) = −p2(t)x(t)−Dβp(t) sinp,β(β(t)),

x(s0) = 1, Dβx(s0) = 0.

ii) D2
β x(t) = −p2(t)x(t) +Dβp(t) cosp,β(β(t)),

x(s0) = 0, Dβx(s0) = p(s0).

iii) D2
β x(t) = −p2(β(t))

β2(t)− β(t)

β(t)− t
x(β2(t))−Dβp(t) Sinp,β(β(t)),

x(s0) = 1, Dβx(s0) = 0.

iv) D2
β x(t) = −p2(β(t))

β2(t)− β(t)

β(t)− t
x(β2(t)) +Dβp(t) Cosp,β(β(t)),

x(s0) = 0, Dβx(s0) = p(s0).

Corollary 3.4. Let z ∈ C. Then cosz,β(t), sinz,β(t), Cosz,β(t) and Sinz,β(t) are solutions
of the following second order β-difference equations, respectively.

i) D2
β x(t) = −z2 x(t), x(s0) = 1, Dβx(s0) = 0.

ii) D2
β x(t) = −z2 x(t), x(s0) = 0, Dβx(s0) = z.

iii) D2
β x(t) = −z2β

2(t)− β(t)

β(t)− t
x(β2(t)), x(s0) = 1, Dβx(s0) = 0.

iv) D2
β x(t) = −z2β

2(t)− β(t)

β(t)− t
x(β2(t)), x(s0) = 0, Dβx(s0) = z.
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Example 3.5. Let β(t) = qt + ω, q ∈ (0, 1), ω > 0, and let p(t) = z, z ∈ C be a

constant. Then, s0 =
ω

1− q
and

β2(t)− β(t)

β(t)− t
= q. Consequently, cosz,β(t), sinz,β(t),

Cosz,β(t) and Sinz,β(t) are solutions of the following second order q, ω-difference equa-
tions, respectively.

i) D2
q,ω x(t) = −z2 x(t), x(s0) = 1, Dq,ωx(s0) = 0.

ii) D2
q,ω x(t) = −z2 x(t), x(s0) = 0, Dq,ωx(s0) = z.

iii) D2
q,ω x(t) = −z2q x(q2t+ ω(1 + q)), x(s0) = 1, Dq,ωx(s0) = 0.

iv) D2
q,ω x(t) = −z2q x(q2t+ ω(1 + q)), x(s0) = 0, Dq,ωx(s0) = z.

Example 3.6. Let β(t) = qt, q ∈ (0, 1), and p(t) = z, z ∈ C be a constant. Then,

s0 = 0 and
β2(t)− β(t)

β(t)− t
= q. Consequently, cosz,β(t), sinz,β(t), Cosz,β(t) and Sinz,β(t)

are solutions of the following second order q, ω-difference equations, respectively.

i) D2
q x(t) = −z2 x(t), x(s0) = 1, Dqx(0) = 0.

ii) D2
q x(t) = −z2 x(t), x(s0) = 0, Dqx(0) = z.

iii) D2
q x(t) = −z2q x(q2t), x(s0) = 1, Dqx(0) = 0.

iv) D2
q x(t) = −z2q x(q2t), x(s0) = 0, Dqx(0) = z.

4 β-Hyperbolic Functions
In this Section we define the β-hyperbolic functions and study some of their properties.

Definition 4.1 (β-Hyperbolic Functions). We define the β-hyperbolic functions by

coshp,β(t) =
ep,β(t) + e−p,β(t)

2
, (4.1)

sinhp,β(t) =
ep,β(t)− e−p,β(t)

2
, (4.2)

Coshp,β(t) =
Ep,β(t) + E−p,β(t)

2
, (4.3)

and

Sinhp,β(t) =
Ep,β(t)− E−p,β(t)

2
. (4.4)

The following theorem introduces some properties of the β-hyperbolic functions. Its
proof is straightforward.
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Theorem 4.2. The β-hyperbolic functions satisfy the following properties:

(1) Dβ coshp,β(t) = p(t)sinhp,β(t),

(2) Dβ sinhp,β(t) = p(t)coshp,β(t),

(3) cosh2
p,β

(t)− sinh2
p,β

(t) = ep,β(t)e−p,β(t)

(at t = s0, cosh2
p,β

(t)− sinh2
p,β

(t) = 1),

(4) coshp,β(t) + sinhp,β(t) = ep,β(t),

(5) coshp,β(t)− sinhp,β(t) = e−p,β(t),

(6) Dβ Coshp,β(t) = p(t)Sinhp,β(β(t)),

(7) Dβ Sinhp,β(t) = p(t)Coshp,β(β(t)),

(8) Cosh2
p,β

(t)− Sinh2
p,β

(t) = Ep,β(t)E−p,β(t),

(9) Coshp,β(t) + Sinhp,β(t) = Ep,β(t),

(10) Coshp,β(t)− Sinhp,β(t) = E−p,β(t).

In the following Theorem, simple calculations show that the β-hyperbolic functions
are solutions of second order β-difference equations.

Theorem 4.3. Let p : I → C be a continuous function at s0. Then coshp,β(t), sinhp,β(t),
Coshp,β(t) and Sinhp,β(t) are solutions of the following second order β-difference equa-
tions, respectively.

i) D2
β x(t) = p2(t)x(t) +Dβp(t) sinhp,β(β(t)),

x(s0) = 1, Dβ x(s0) = 0.

ii) D2
β x(t) = p2(t)x(t) +Dβp(t) coshp,β(β(t)),

x(s0) = 0, Dβx(s0) = p(s0).

iii) D2
β x(t) = p2(β(t))

β2(t)− β(t)

β(t)− t
x(β2(t)) +Dβp(t) Sinhp,β(β(t)),

x(s0) = 1, Dβx(s0) = 0.

iv) D2
βx(t) = p2(β(t))

β2(t)− β(t)

β(t)− t
x(β2(t)) +Dβp(t) Coshp,β(β(t)),

x(s0) = 0, Dβx(s0) = p(s0).
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Corollary 4.4. Let z ∈ C. Then coshz,β(t), sinhz,β(t), Coshz,β(t) and Sinhz,β(t) are
solutions of the following second order β-difference equations, respectively.

i) D2
β x(t) = z2 x(t), x(s0) = 1, Dβ x(s0) = 0.

ii) D2
β x(t) = z2 x(t), x(s0) = 0, Dβx(s0) = z.

iii) D2
β x(t) = z2

β2(t)− β(t)

β(t)− t
x(β2(t)), x(s0) = 1, Dβx(s0) = 0.

iv) D2
βx(t) = z2

β2(t)− β(t)

β(t)− t
x(β2(t)), x(s0) = 0, Dβx(s0) = z.

Example 4.5. Let β(t) = qt + ω, q ∈ (0, 1), ω > 0, and let p(t) = z, z ∈ C be

a constant. Then,
β2(t)− β(t)

β(t)− t
= q. Consequently, coshz,β(t), sinhz,β(t), Coshz,β(t)

and Sinhz,β(t) are solutions of the following second order q, ω-difference equations,
respectively.

i) D2
q,ω x(t) = z2 x(t), x(s0) = 1, Dq,ωx(s0) = 0.

ii) D2
q,ω x(t) = z2 x(t), x(s0) = 0, Dq,ωx(s0) = z.

iii) D2
q,ω x(t) = z2q x(q2t+ ω(1 + q)), x(s0) = 1, Dq,ωx(s0) = 0.

iv) D2
q,ω x(t) = z2q x(q2t+ ω(1 + q)), x(s0) = 0, Dq,ωx(s0) = z.

Example 4.6. Let β(t) = qt, q ∈ (0, 1) and p(t) = z, z ∈ C be a constant. Then,
β2(t)− β(t)

β(t)− t
= q. Consequently, coshz,β(t), sinhz,β(t), Coshz,β(t) and Sinhz,β(t) are

solutions of the following second order q-difference equations, respectively.

i) D2
q x(t) = z2 x(t), x(s0) = 1, Dqx(0) = 0.

ii) D2
q x(t) = z2 x(t), x(s0) = 0, Dqx(0) = z.

iii) D2
q x(t) = z2q x(q2t), x(s0) = 1, Dqx(0) = 0.

iv) D2
q x(t) = z2q x(q2t), x(s0) = 0, Dqx(0) = z.

Conclusion
In this paper, we defined the β-exponential functions and proved that they are a unique
solutions for the first order β-difference equations. Also, the β-trigonometric functions
and their properties were introduced and that they satisfy the second order β-difference
equations. Finally, the β-hyperbolic functions and their properties were introduced.
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