Exponential, Trigonometric and Hyperbolic Functions Associated with a General Quantum Difference Operator

Alaa E. Hamza

Cairo University, Faculty of Science Mathematics Department Giza, Egypt hamzaaeg2003@yahoo.com

Abdel-Shakoor M. Sarhan and Enas M. Shehata

Menoufia University, Faculty of Science Mathematics Department Shibin El-Koom, Egypt

sarhan1929@yahoo.com and enasmohyi@yahoo.com

Abstract

In this paper, we present the β -exponential and β -trigonometric functions based on the general quantum difference operator D_{β} defined by

$$D_{\beta}f(t) = \frac{f(\beta(t)) - f(t)}{\beta(t) - t}, \ \beta(t) \neq t,$$

which are the solutions of the first and second order β -difference equations, respectively. Here, β is a strictly increasing continuous function defined on an interval $I \subseteq \mathbb{R}$. Furthermore, we establish many properties of these functions. Finally, the β -hyperbolic functions and their properties are introduced.

AMS Subject Classifications: 39A10, 39A13, 39A70, 47B39. **Keywords:** Quantum difference operator, quantum calculus, Hahn difference operator, Jackson *q*-difference operator.

Received November 11, 2016; Accepted April 27, 2017 Communicated by Martin Bohner

1 Introduction

Quantum calculus is recently subject to an increase number of investigations, due to its applications. It substitutes the usual derivative by a difference operator, which allows one to deal with sets of non-differentiable functions [3, 10]. Quantum calculus has applications in many areas, for instance calculus of variations, economical systems, and several fields of physics such as black holes, quantum mechanics, nuclear and high energy physics [7–9, 16–19]. In [14] we have constructed a general quantum difference operator D_{β} , by considering a strictly increasing continuous function $\beta : I \rightarrow I$, where I is an interval of \mathbb{R} containing a fixed point s_0 of β . The β -difference operator is defined by

$$D_{\beta}f(t) = \begin{cases} \frac{f(\beta(t)) - f(t)}{\beta(t) - t}, \ t \neq s_0, \\ f'(s_0), \qquad t = s_0. \end{cases}$$

where f is an arbitrary function defined on I, and is differentiable at $t = s_0$ in the usual sense. As particular cases, we obtain the Hahn difference operator $D_{q,\omega}$ when $\beta(t) = qt + \omega, q \in (0, 1), \omega > 0$ are fixed numbers, the Jackson q-difference operator D_q when $\beta(t) = qt, q \in (0, 1)$, the n, q-power quantum difference operator when $\beta(t) = qt^n, q \in (0, 1), n$ is a fixed odd positive integer and the forward difference operator $\Delta_{a,b}$ when $\beta(t) = at + b, a \ge 1, b \ge 0$ and a + b > 1. For more details about these operators we refer the reader to [1, 2, 4-6, 11-13, 15].

In a first step towards the development of the general quantum difference calculus, in [14], we considered our function β when it has only one fixed point $s_0 \in I$ and satisfies the following condition

$$(t-s_0)(\beta(t)-t) \leq 0$$
 for all $t \in I$,

and gave a rigorous analysis of the calculus based on D_{β} and its associated integral operator. Some basic properties of such a calculus were stated and proved. For instance, the chain rule, Leibniz' formula, the mean value theorem and the fundamental theorem of β -calculus.

This paper is organized as follows. In Section 2, the β -exponential functions are defined and some of their properties are introduced. Also, we prove that they are the unique solutions of the first order β -difference equations. In Section 3, the β -trigonometric functions are presented and their properties are established. In Section 4, the β -hyperbolic functions are exhibited and their properties are shown. Throughout the paper \mathbb{X} is a Banach space, I is an interval of \mathbb{R} containing only one fixed point s_0 of β and

$$\beta^k(t) := \underbrace{\beta \circ \beta \circ \cdots \circ \beta}_{k-times}(t).$$

We need the following results from [14] to prove our main results.

Theorem 1.1. If $f : I \to \mathbb{X}$ is continuous at s_0 , then the series $\sum_{k=0}^{\infty} ||(\beta^k(t) - \beta^{k+1}(t))f(\beta^k(t))||$ is uniformly convergent on every compact interval $J \subseteq I$ containing s_0 .

Definition 1.2. For a function $f : I \to X$, we define the β -difference operator of f as

$$D_{\beta}f(t) = \begin{cases} \frac{f(\beta(t)) - f(t)}{\beta(t) - t}, \ t \neq s_0, \\ f'(s_0), \qquad t = s_0 \end{cases}$$

provided that f' exists at s_0 . In this case, we say that $D_\beta f(t)$ is the β -derivative of f at t. We say that f is β -differentiable on I if $f'(s_0)$ exists.

Theorem 1.3. Assume that $f : I \to \mathbb{X}$ and $g : I \to \mathbb{R}$ are β -differentiable at $t \in I$. *Then:*

(i) The product $fg: I \to X$ is β -differentiable at t and

$$D_{\beta}(fg)(t) = (D_{\beta}f(t))g(t) + f(\beta(t))D_{\beta}g(t)$$

= $(D_{\beta}f(t))g(\beta(t)) + f(t)D_{\beta}g(t).$

(ii) f/g is β -differentiable at t and

$$D_{\beta}(f/g)(t) = \frac{(D_{\beta}f(t))g(t) - f(t)D_{\beta}g(t)}{g(t)g(\beta(t))},$$

provided that $g(t)g(\beta(t)) \neq 0$.

Lemma 1.4. Let $f : I \to X$ be β -differentiable and $D_{\beta}f(t) = 0$ for all $t \in I$, then $f(t) = f(s_0)$ for all $t \in I$.

Theorem 1.5. Assume $f : I \to X$ is continuous at s_0 . Then the function F defined by

$$F(t) = \sum_{k=0}^{\infty} \left(\beta^k(t) - \beta^{k+1}(t) \right) f(\beta^k(t)), \ t \in I,$$
(1.1)

is a β -antiderivative of f with $F(s_0) = 0$. Conversely, a β -antiderivative F of f vanishing at s_0 is given by the formula (1.1).

Definition 1.6. Let $f : I \to \mathbb{X}$ and $a, b \in I$. We define the β -integral of f from a to b by

$$\int_{a}^{b} f(t)d_{\beta}t = \int_{s_{0}}^{b} f(t)d_{\beta}t - \int_{s_{0}}^{a} f(t)d_{\beta}t, \qquad (1.2)$$

where

$$\int_{s_0}^x f(t)d_\beta t = \sum_{k=0}^\infty \left(\beta^k(x) - \beta^{k+1}(x)\right) f(\beta^k(x)), \quad x \in I.$$
(1.3)

provided that the series converges at x = a and x = b. f is called β -integrable on I if the series converges at a, b for all $a, b \in I$. Clearly, if f is continuous at $s_0 \in I$, then f is β -integrable on I.

Theorem 1.7. Let $f : I \to \mathbb{X}$ be continuous at s_0 . Define the function

$$F(x) = \int_{s_0}^x f(t)d_\beta t, \quad x \in I.$$
(1.4)

Then F is continuous at s_0 , $D_\beta F(x)$ exists for all $x \in I$ and $D_\beta F(x) = f(x)$.

2 β -Exponential Functions

In this section, we define the β -exponential functions and we study some of their properties.

Definition 2.1 (β -Exponential Functions). Assume that $p : I \to \mathbb{C}$ is a continuous function at s_0 . We define the β -exponential functions $e_{p,\beta}(t)$ and $E_{p,\beta}(t)$ by

$$e_{p,\beta}(t) = \frac{1}{\prod_{k=0}^{\infty} \left[1 - p(\beta^k(t))(\beta^k(t) - \beta^{k+1}(t)) \right]}$$
(2.1)

and

$$E_{p,\beta}(t) = \prod_{k=0}^{\infty} \left[1 + p(\beta^k(t))(\beta^k(t) - \beta^{k+1}(t)) \right],$$
(2.2)

It is worth mentioning that both products in (2.1) and (2.2) are convergent since

$$\sum_{k=0}^{\infty} |p(\beta^k(t))(\beta^k(t) - \beta^{k+1}(t))|$$

is uniformly convergent by Theorem 1.1. For the case when p is a constant function $p(t) = z, z \in \mathbb{C}$ and $\beta(t) = qt + \omega, \omega > 0$ and $q \in (0, 1)$, we obtain the Hahn exponential functions, see [4]. From (2.1), (2.2) we have

$$e_{p,\beta}(t) = \frac{1}{E_{-p,\beta}(t)}.$$
 (2.3)

Theorem 2.2. The β -exponential functions $e_{p,\beta}(t)$ and $E_{p,\beta}(t)$ are the unique solutions of the first order β -difference equations

$$D_{\beta}y(t) = p(t)y(t), \quad y(s_0) = 1,$$
 (2.4)

and

$$D_{\beta}y(t) = p(t)y(\beta(t)), \quad y(s_0) = 1,$$
 (2.5)

respectively.

Proof. It is obvious that $e_{p,\beta}(s_0) = E_{p,\beta}(s_0) = 1$. We have

$$D_{\beta}e_{p,\beta}(t) = \frac{e_{p,\beta}(\beta(t)) - e_{p,\beta}(t)}{\beta(t) - t}$$

= $\frac{1}{\beta(t) - t} \Big[\frac{1}{\prod_{k=0}^{\infty} (1 - p(\beta^{k+1}(t))(\beta^{k+1}(t) - \beta^{k+2}(t))))} - \frac{1}{\prod_{k=0}^{\infty} (1 - p(\beta^{k}(t))(\beta^{k}(t) - \beta^{k+1}(t)))} \Big]$
= $\frac{p(t)}{\prod_{k=0}^{\infty} (1 - p(\beta^{k}(t))(\beta^{k}(t) - \beta^{k+1}(t)))} = p(t)e_{p,\beta}(t).$

Similarly, we see that $E_{p,\beta}(t)$ is a solution of (2.5). Finally, to prove the uniqueness of the solution $e_{p,\beta}(t)$, let x(t) be another solution of (2.4). We have

$$D_{\beta}\left(\frac{x(t)}{e_{p,\beta}(t)}\right) = \frac{e_{p,\beta}(t)D_{\beta}x(t) - x(t)D_{\beta}e_{p,\beta}(t)}{e_{p,\beta}(t)e_{p,\beta}(\beta(t))} = 0, \ t \in I.$$

By Lemma 1.4, $\frac{x(t)}{e_{p,\beta}(t)}$ is a constant function and $\frac{x(t)}{e_{p,\beta}(t)} = \frac{x(s_0)}{e_{p,\beta}(s_0)} = 1$, i.e., $x(t) = e_{p,\beta}(t)$ for all $t \in I$. Similarly $E_{p,\beta}(t)$ is the unique solution of (2.5).

Consider the non-homogeneous first order linear β -difference equation

$$D_{\beta}y(t) = p(t)y(t) + f(t), \quad y(s_0) = y_0 \in \mathbb{X}.$$
 (2.6)

Theorem 2.3. Let $f : I \to X$ be continuous function at s_0 . then

$$y(t) = e_{p,\beta}(t) \left(y_0 + \int_{s_0}^t f(\tau) E_{-p,\beta}(\beta(\tau)) d_\beta \tau \right)$$
(2.7)

is a solution of equation (2.6).

Proof. We have

$$D_{\beta}y(t) = D_{\beta}e_{p,\beta}(t)y_0 + D_{\beta}e_{p,\beta}(t)\int_{s_0}^t f(\tau)E_{-p,\beta}(\beta(\tau))d_{\beta}\tau + e_{p,\beta}(\beta(t))f(t)E_{-p,\beta}(\beta(t)) = p(t)e_{p,\beta}(t)y_0 + p(t)e_{p,\beta}(t)\int_{s_0}^t f(\tau)E_{-p,\beta}(\beta(\tau))d_{\beta}\tau + f(t) = p(t)y(t) + f(t).$$

Also, $y(s_0) = y_0$.

In the following two theorems we introduce some important properties of the β -exponential function.

Theorem 2.4. Let $p : I \to \mathbb{C}$ be a continuous function at s_0 . Then the following properties hold:

(i)
$$e_{p,\beta}(\beta(t)) = [1 + (\beta(t) - t)p(t)]e_{p,\beta}(t), t \in I,$$

(ii) $D_{\beta}(\frac{1}{e_{p,\beta}(t)}) = \frac{-p(t)}{e_{p,\beta}(\beta(t))},$

(iii) $\frac{1}{e_{p,\beta}(t)}$ is the unique solution of the first order β -difference equation

$$D_{\beta}y(t) = \frac{-p(t)e_{p,\beta}(t)}{e_{p,\beta}(\beta(t))}y(t), \qquad y(s_0) = 1.$$
(2.8)

Proof. (i) From the definition of D_{β} , we have

$$e_{p,\beta}(\beta(t)) = e_{p,\beta}(t) + (\beta(t) - t)D_{\beta}e_{p,\beta}(t) = e_{p,\beta}(t)[1 + (\beta(t) - t)p(t)].$$

(ii) By Theorem 1.3 (ii), we get

$$D_{\beta}(\frac{1}{e_{p,\beta}(t)}) = \frac{-D_{\beta}e_{p,\beta}(t)}{e_{p,\beta}(t)e_{p,\beta}(\beta(t))} = \frac{-p(t)}{e_{p,\beta}(\beta(t))}.$$

(iii) We can see that

$$\frac{1}{e_{p,\beta}(s_0)} = 1.$$

By part (ii), we get $\frac{1}{e_{p,\beta}(t)}$ is a solution of (2.8). To show that the solution is unique, suppose that x(t) is another solution of (2.8), then

$$\begin{split} D_{\beta}(x(t)e_{p,\beta}(t)) &= x(t)D_{\beta}e_{p,\beta}(t) + D_{\beta}x(t)e_{p,\beta}(\beta(t)) \\ &= x(t)p(t)e_{p,\beta}(t) - \frac{p(t)e_{p,\beta}(t)}{e_{p,\beta}(\beta(t))}x(t)e_{p,\beta}(\beta(t)) = 0. \end{split}$$

Hence, $x(t)e_{p,\beta}(t) &= x(s_0)e_{p,\beta}(s_0) = 1.$ Therefore, $x(t) = \frac{1}{e_{p,\beta}(t)}.$

Theorem 2.5. Suppose $p, q : I \to \mathbb{C}$ are continuous functions at s_0 . Then the following properties hold:

(i)
$$\frac{1}{e_{p,\beta}(t)} = e_{\frac{-p(t)}{1-p(t)(t-\beta(t))},\beta}(t),$$

(*ii*)
$$e_{p,\beta}(t)e_{q,\beta}(t) = e_{[p(t)+(\beta(t)-t)p(t)q(t)+q(t)],\beta}(t)$$

(iii)
$$\frac{e_{p,\beta}(t)}{e_{q,\beta}(t)} = e_{\frac{p(t)-q(t)}{1-q(t)(t-\beta(t))},\beta}(t).$$

Proof. (i) Clearly,
$$e_{\frac{-p(t)}{1-p(t)(t-\beta(t))},\beta}(t)$$
 is a solution of equation (2.8), then $\frac{1}{e_{p,\beta}(t)} = e_{\frac{-p(t)}{1-p(t)(t-\beta(t))},\beta}(t)$.

(ii) We have

$$D_{\beta}(e_{p,\beta}(t)e_{q,\beta}(t)) = D_{\beta}e_{p,\beta}(t)e_{q,\beta}(t) + e_{p,\beta}(\beta(t))D_{\beta}e_{q,\beta}(t)$$

= $p(t)e_{p,\beta}(t)e_{q,\beta}(t) + q(t)e_{p,\beta}(\beta(t))e_{q,\beta}(t)$
= $p(t)e_{p,\beta}(t)e_{q,\beta}(t) + q(t)e_{q,\beta}(t)[1 + (\beta(t) - t)p(t)]e_{p,\beta}(t)$
= $[p(t) + (\beta(t) - t)p(t)q(t) + q(t)]e_{p,\beta}(t)e_{q,\beta}(t).$

(iii) This is a consequence of (i) and (ii).

The proof is complete.

Example 2.6. Let $p(t) = \frac{2}{t}$ and $\beta(t) = \frac{1}{2}t + \frac{1}{2}$, for $t \in [1, 2]$. The unique fixed point of the function β is $s_0 = 1$. One can check that

$$e_{\frac{2}{t},\frac{1}{2}t+\frac{1}{2}}(t) = \frac{1}{\prod_{k=0}^{\infty} \left[1 - \frac{t-1}{t-1+2^k}\right]}.$$

Clearly, $e_{\frac{2}{t},\frac{1}{2}t+\frac{1}{2}}(1) = 1$. So, $e_{\frac{2}{t},\frac{1}{2}t+\frac{1}{2}}(t)$ is the unique solution of the equation

$$D_{\beta}y(t) = \frac{2}{t}y(t), \quad y(1) = 1.$$

Example 2.7. Let p(t) = t(1+i) and $\beta(t) = \frac{1}{2}t$, for $t \in [0, 2]$. The unique fixed point of the function β is $s_0 = 0$. Clearly, $e_{t(1+i), \frac{1}{2}t}(0) = 1$. One can check that

$$e_{t(1+i),\frac{1}{2}t}(t) = \frac{1}{\prod_{k=0}^{\infty} \left[1 - \frac{t^2(1+i)}{2^{2k+1}}\right]},$$

is the unique solution of the equation $D_{\beta}y(t) = t(1+i)y(t), \quad y(0) = 1.$

3 β -Trigonometric Functions

In this Section we define the β -trigonometric functions and study some of their properties.

Definition 3.1 (β -Trigonometric Functions). We define the β -trigonometric functions by

$$\cos_{p,\beta}(t) = \frac{e_{ip,\beta}(t) + e_{-ip,\beta}(t)}{2},$$
(3.1)

$$\sin_{p,\beta}(t) = \frac{e_{ip,\beta}(t) - e_{-ip,\beta}(t)}{2i},$$
(3.2)

$$\cos_{p,\beta}(t) = \frac{E_{ip,\beta}(t) + E_{-ip,\beta}(t)}{2},$$
(3.3)

and

$$\operatorname{Sin}_{p,\beta}(t) = \frac{E_{ip,\beta}(t) - E_{-ip,\beta}(t)}{2i}.$$
(3.4)

Simple calculations show that the β -trigonometric functions satisfy the relations in the following theorem.

Theorem 3.2. For all $t \in I$. The following relations are true:

- (1) $D_{\beta} \sin_{p,\beta}(t) = p(t) \cos_{p,\beta}(t)$,
- (2) $D_{\beta} \cos_{p,\beta}(t) = -p(t) \sin_{p,\beta}(t)$,
- (3) $\cos_{p,\beta}(t) + i \sin_{p,\beta}(t) = e_{ip,\beta}(t)$,

(4)
$$\cos^2_{p,\beta}(t) + \sin^2_{p,\beta}(t) = e_{ip,\beta}(t)e_{-ip,\beta}(t)$$
 (at $t = s_0$, $\cos^2_{p,\beta}(t) + \sin^2_{p,\beta}(t) = 1$),

- (5) $D_{\beta} \operatorname{Sin}_{p,\beta}(t) = p(t) \operatorname{Cos}_{p,\beta}(\beta(t)),$
- (6) $D_{\beta} \operatorname{Cos}_{p,\beta}(t) = -p(t) \operatorname{Sin}_{p,\beta}(\beta(t)),$
- (7) $\operatorname{Sin}_{p,\beta}^{2}(t) + \operatorname{Cos}_{p,\beta}^{2}(t) = E_{ip,\beta}(t)E_{-ip,\beta}(t),$

- (8) $\operatorname{Cos}_{p,\beta}(t) + i\operatorname{Sin}_{p,\beta}(t) = E_{ip,\beta}(t),$
- (9) $\sin_{p,\beta}(t) \sin_{p,\beta}(t) + \cos_{p,\beta}(t) \cos_{p,\beta}(t) = 1$,
- (10) $\sin_{p,\beta}(t)\operatorname{Cos}_{p,\beta}(t) \cos_{p,\beta}(t)\operatorname{Sin}_{p,\beta}(t) = 0.$

In the following theorem it can be easily seen that the β -trigonometric functions are solutions of the second order β -difference equations.

Theorem 3.3. Let $p: I \to \mathbb{C}$ be a continuous function at s_0 . Then $\cos_{p,\beta}(t)$, $\sin_{p,\beta}(t)$, $\cos_{p,\beta}(t)$ and $\sin_{p,\beta}(t)$ are solutions of the following second order β -difference equations, respectively.

- i) $D_{\beta}^{2} x(t) = -p^{2}(t)x(t) D_{\beta}p(t) \sin_{p,\beta}(\beta(t)),$ $x(s_{0}) = 1, \ D_{\beta}x(s_{0}) = 0.$
- *ii*) $D_{\beta}^{2} x(t) = -p^{2}(t)x(t) + D_{\beta}p(t)\cos_{p,\beta}(\beta(t)),$ $x(s_{0}) = 0, \ D_{\beta}x(s_{0}) = p(s_{0}).$

iii) $D_{\beta}^{2} x(t) = -p^{2}(\beta(t)) \frac{\beta^{2}(t) - \beta(t)}{\beta(t) - t} x(\beta^{2}(t)) - D_{\beta}p(t) \operatorname{Sin}_{p,\beta}(\beta(t)),$ $x(s_{0}) = 1, \ D_{\beta}x(s_{0}) = 0.$

iv)
$$D_{\beta}^{2} x(t) = -p^{2}(\beta(t)) \frac{\beta^{2}(t) - \beta(t)}{\beta(t) - t} x(\beta^{2}(t)) + D_{\beta}p(t) \operatorname{Cos}_{p,\beta}(\beta(t)),$$

 $x(s_{0}) = 0, \ D_{\beta}x(s_{0}) = p(s_{0}).$

Corollary 3.4. Let $z \in \mathbb{C}$. Then $\cos_{z,\beta}(t)$, $\sin_{z,\beta}(t)$, $\cos_{z,\beta}(t)$ and $\sin_{z,\beta}(t)$ are solutions of the following second order β -difference equations, respectively.

- i) $D_{\beta}^2 x(t) = -z^2 x(t)$, $x(s_0) = 1$, $D_{\beta}x(s_0) = 0$.
- $\textit{ii)} \ D_{\beta}^2 \, x(t) = -z^2 \, x(t), \quad x(s_0) = 0, \ D_{\beta} x(s_0) = z.$
- *iii*) $D_{\beta}^{2} x(t) = -z^{2} \frac{\beta^{2}(t) \beta(t)}{\beta(t) t} x(\beta^{2}(t)), \quad x(s_{0}) = 1, \ D_{\beta}x(s_{0}) = 0.$
- iv) $D_{\beta}^2 x(t) = -z^2 \frac{\beta^2(t) \beta(t)}{\beta(t) t} x(\beta^2(t)), \quad x(s_0) = 0, \ D_{\beta} x(s_0) = z.$

Example 3.5. Let $\beta(t) = qt + \omega$, $q \in (0, 1)$, $\omega > 0$, and let p(t) = z, $z \in \mathbb{C}$ be a constant. Then, $s_0 = \frac{\omega}{1-q}$ and $\frac{\beta^2(t) - \beta(t)}{\beta(t) - t} = q$. Consequently, $\cos_{z,\beta}(t)$, $\sin_{z,\beta}(t)$, $\cos_{z,\beta}(t)$ and $\sin_{z,\beta}(t)$ are solutions of the following second order q, ω -difference equations, respectively.

i)
$$D_{q,\omega}^2 x(t) = -z^2 x(t)$$
, $x(s_0) = 1$, $D_{q,\omega} x(s_0) = 0$.

ii)
$$D_{q,\omega}^2 x(t) = -z^2 x(t), \quad x(s_0) = 0, \ D_{q,\omega} x(s_0) = z.$$

iii)
$$D_{q,\omega}^2 x(t) = -z^2 q x(q^2 t + \omega(1+q)), \quad x(s_0) = 1, \ D_{q,\omega} x(s_0) = 0.$$

iv)
$$D_{q,\omega}^2 x(t) = -z^2 q x(q^2 t + \omega(1+q)), \quad x(s_0) = 0, \ D_{q,\omega} x(s_0) = z.$$

Example 3.6. Let $\beta(t) = qt$, $q \in (0, 1)$, and p(t) = z, $z \in \mathbb{C}$ be a constant. Then, $s_0 = 0$ and $\frac{\beta^2(t) - \beta(t)}{\beta(t) - t} = q$. Consequently, $\cos_{z,\beta}(t)$, $\sin_{z,\beta}(t)$, $\cos_{z,\beta}(t)$ and $\sin_{z,\beta}(t)$ are solutions of the following second order q, ω -difference equations, respectively.

i)
$$D_q^2 x(t) = -z^2 x(t)$$
, $x(s_0) = 1$, $D_q x(0) = 0$.
ii) $D_q^2 x(t) = -z^2 x(t)$, $x(s_0) = 0$, $D_q x(0) = z$.
iii) $D_q^2 x(t) = -z^2 q x(q^2 t)$, $x(s_0) = 1$, $D_q x(0) = 0$.
iv) $D_q^2 x(t) = -z^2 q x(q^2 t)$, $x(s_0) = 0$, $D_q x(0) = z$.

4 β -Hyperbolic Functions

In this Section we define the β -hyperbolic functions and study some of their properties. **Definition 4.1** (β -Hyperbolic Functions). We define the β -hyperbolic functions by

$$\cosh_{p,\beta}(t) = \frac{e_{p,\beta}(t) + e_{-p,\beta}(t)}{2},$$
(4.1)

$$\sinh_{p,\beta}(t) = \frac{e_{p,\beta}(t) - e_{-p,\beta}(t)}{2},$$
(4.2)

$$\operatorname{Cosh}_{p,\beta}(t) = \frac{E_{p,\beta}(t) + E_{-p,\beta}(t)}{2},$$
(4.3)

and

$$\operatorname{Sinh}_{p,\beta}(t) = \frac{E_{p,\beta}(t) - E_{-p,\beta}(t)}{2}.$$
(4.4)

The following theorem introduces some properties of the β -hyperbolic functions. Its proof is straightforward.

Theorem 4.2. The β -hyperbolic functions satisfy the following properties:

- (1) $D_{\beta} \cosh_{p,\beta}(t) = p(t) \sinh_{p,\beta}(t)$,
- (2) $D_{\beta} \sinh_{p,\beta}(t) = p(t) \cosh_{p,\beta}(t)$,
- (3) $\cosh_{p,\beta}^{2}(t) \sinh_{p,\beta}^{2}(t) = e_{p,\beta}(t)e_{-p,\beta}(t)$ (at $t = s_{0}$, $\cosh_{p,\beta}^{2}(t) - \sinh_{p,\beta}^{2}(t) = 1$),
- (4) $\cosh_{p,\beta}(t) + \sinh_{p,\beta}(t) = e_{p,\beta}(t)$,
- (5) $\cosh_{p,\beta}(t) \sinh_{p,\beta}(t) = e_{-p,\beta}(t)$,
- (6) $D_{\beta} \operatorname{Cosh}_{p,\beta}(t) = p(t) \operatorname{Sinh}_{p,\beta}(\beta(t)),$
- (7) $D_{\beta} \operatorname{Sinh}_{p,\beta}(t) = p(t) \operatorname{Cosh}_{p,\beta}(\beta(t)),$
- (8) $\operatorname{Cosh}_{p,\beta}^{2}(t) \operatorname{Sinh}_{p,\beta}^{2}(t) = E_{p,\beta}(t)E_{-p,\beta}(t),$
- (9) $\operatorname{Cosh}_{p,\beta}(t) + \operatorname{Sinh}_{p,\beta}(t) = E_{p,\beta}(t)$,
- (10) $\operatorname{Cosh}_{p,\beta}(t) \operatorname{Sinh}_{p,\beta}(t) = E_{-p,\beta}(t).$

In the following Theorem, simple calculations show that the β -hyperbolic functions are solutions of second order β -difference equations.

Theorem 4.3. Let $p: I \to \mathbb{C}$ be a continuous function at s_0 . Then $\cosh_{p,\beta}(t)$, $\sinh_{p,\beta}(t)$, $\cosh_{p,\beta}(t)$ and $\sinh_{p,\beta}(t)$ are solutions of the following second order β -difference equations, respectively.

i)
$$D_{\beta}^{2} x(t) = p^{2}(t)x(t) + D_{\beta}p(t)\sinh_{p,\beta}(\beta(t)),$$

 $x(s_{0}) = 1, \ D_{\beta} x(s_{0}) = 0.$

ii) $D_{\beta}^2 x(t) = p^2(t)x(t) + D_{\beta}p(t)\cosh_{p,\beta}(\beta(t)),$ $x(s_0) = 0, \ D_{\beta}x(s_0) = p(s_0).$

iii)
$$D_{\beta}^{2} x(t) = p^{2}(\beta(t)) \frac{\beta^{2}(t) - \beta(t)}{\beta(t) - t} x(\beta^{2}(t)) + D_{\beta}p(t) \operatorname{Sinh}_{p,\beta}(\beta(t)),$$

 $x(s_{0}) = 1, \ D_{\beta}x(s_{0}) = 0.$

$$iv) \ D_{\beta}^{2}x(t) = p^{2}(\beta(t))\frac{\beta^{2}(t) - \beta(t)}{\beta(t) - t}x(\beta^{2}(t)) + D_{\beta}p(t)\operatorname{Cosh}_{p,\beta}(\beta(t)),$$
$$x(s_{0}) = 0, \ D_{\beta}x(s_{0}) = p(s_{0}).$$

Corollary 4.4. Let $z \in \mathbb{C}$. Then $\cosh_{z,\beta}(t)$, $\sinh_{z,\beta}(t)$, $\operatorname{Cosh}_{z,\beta}(t)$ and $\operatorname{Sinh}_{z,\beta}(t)$ are solutions of the following second order β -difference equations, respectively.

$$i) \ D_{\beta}^{2} x(t) = z^{2} x(t), \quad x(s_{0}) = 1, \ D_{\beta} x(s_{0}) = 0.$$

$$ii) \ D_{\beta}^{2} x(t) = z^{2} x(t), \quad x(s_{0}) = 0, \ D_{\beta} x(s_{0}) = z.$$

$$iii) \ D_{\beta}^{2} x(t) = z^{2} \frac{\beta^{2}(t) - \beta(t)}{\beta(t) - t} x(\beta^{2}(t)), \quad x(s_{0}) = 1, \ D_{\beta} x(s_{0}) = 0.$$

$$iv) \ D_{\beta}^{2} x(t) = z^{2} \frac{\beta^{2}(t) - \beta(t)}{\beta(t) - t} x(\beta^{2}(t)), \quad x(s_{0}) = 0, \ D_{\beta} x(s_{0}) = z.$$

Example 4.5. Let $\beta(t) = qt + \omega$, $q \in (0,1)$, $\omega > 0$, and let p(t) = z, $z \in \mathbb{C}$ be a constant. Then, $\frac{\beta^2(t) - \beta(t)}{\beta(t) - t} = q$. Consequently, $\cosh_{z,\beta}(t)$, $\sinh_{z,\beta}(t)$, $\cosh_{z,\beta}(t)$, $\cosh_{z,\beta}(t)$ and $\sinh_{z,\beta}(t)$ are solutions of the following second order q, ω -difference equations, respectively.

i)
$$D_{q,\omega}^2 x(t) = z^2 x(t), \quad x(s_0) = 1, \ D_{q,\omega} x(s_0) = 0.$$

ii) $D_{q,\omega}^2 x(t) = z^2 x(t), \quad x(s_0) = 0, \ D_{q,\omega} x(s_0) = z.$
iii) $D_{q,\omega}^2 x(t) = z^2 q x(q^2 t + \omega(1+q)), \quad x(s_0) = 1, \ D_{q,\omega} x(s_0) = 0.$

iv)
$$D_{q,\omega}^2 x(t) = z^2 q x(q^2 t + \omega(1+q)), \quad x(s_0) = 0, \ D_{q,\omega} x(s_0) = z$$

Example 4.6. Let $\beta(t) = qt$, $q \in (0,1)$ and p(t) = z, $z \in \mathbb{C}$ be a constant. Then, $\frac{\beta^2(t) - \beta(t)}{\beta(t) - t} = q$. Consequently, $\cosh_{z,\beta}(t)$, $\sinh_{z,\beta}(t)$, $\operatorname{Cosh}_{z,\beta}(t)$ and $\operatorname{Sinh}_{z,\beta}(t)$ are solutions of the following second order q-difference equations, respectively.

- i) $D_q^2 x(t) = z^2 x(t)$, $x(s_0) = 1$, $D_q x(0) = 0$.
- ii) $D_q^2 x(t) = z^2 x(t)$, $x(s_0) = 0$, $D_q x(0) = z$.
- iii) $D_q^2 x(t) = z^2 q x(q^2 t), \quad x(s_0) = 1, \ D_q x(0) = 0.$
- iv) $D_q^2 x(t) = z^2 q x(q^2 t), \quad x(s_0) = 0, \ D_q x(0) = z.$

Conclusion

In this paper, we defined the β -exponential functions and proved that they are a unique solutions for the first order β -difference equations. Also, the β -trigonometric functions and their properties were introduced and that they satisfy the second order β -difference equations. Finally, the β -hyperbolic functions and their properties were introduced.

Acknowledgments

The authors sincerely thank the referees for their valuable suggestions and comments.

References

- [1] K. A. Aldwoah, Generalized time scales and the associated difference equations, Ph.D. thesis, Cairo University, (2009).
- [2] K. A. Aldwoah, A. B. Malinowska and D. F. M. Torres, The power quantum calculus and variational problems, Dyn. Cont. Disc. Impul. Syst. 19, (2012), pp. 93–116.
- [3] R. Almeida and D. F. M. Torres, Non-differentiable variational principles in terms of a quantum operator, Math. Methods Appl. Sci. 34, (2011), pp. 2231–2241. Available at arXiv:1106. 3831.
- [4] M. H. Annaby, A. E. Hamza and K. A. Aldwoah, Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl. 154, (2012), pp. 133–153.
- [5] M. H. Annaby and Z. S. Mansour, *q*-Fractional Calculus and Equations, Springer, (2012).
- [6] T. J. Auch, Development and Application of Difference and Fractional Calculus on Discrete Time Scales. Ph.D. thesis, University of Nebraska-Lincoln (2013).
- [7] G. Bangerezako, Variational *q*-calculus. J. Math. Anal. Appl. 289, 2, (2004), pp. 650–665.
- [8] A. M. C. Brito Da Cruz, Symmetric quantum calculus. Ph. D. Thesis, Aveiro University, 2012.
- [9] A. M. C. Brito Da Cruz, N. Martins, D. F. M. Torres, Hahn's symmetric quantum variational calculus, Numer. Algebra Control Optim., (2012). Available at arXiv:1209.1530v1.
- [10] J. Cresson, G. S. F. Frederico and D. F. M. Torres, Constants of motion for nondifferentiable quantum variational problems, Topol. Methods Nonl. Anal. 33, 2, (2009), pp. 217–231. Available at aXiv:0805.070
- [11] W. Hahn, Über Orthogonalpolynome, die *q*-Differenzengleichungen genügen. Math. Nachr. 2, (1949), pp. 4–34.
- [12] A. E. Hamza and S. M. Ahmed, Existence and uniqueness of solutions of Hahn difference equations. Adv. Differ. Equ. 2013, 316 (2013).

- [13] A. E. Hamza and S. M. Ahmed, Theory of linear Hahn difference equations. J. Adv. Math. 4, 2, (2013).
- [14] A. E. Hamza, A. M. Sarhan, E. M. Shehata and K. A. Aldwoah, A general quantum difference calculus. Adv. Differ. Equ. 2015:182 (2015). DOI: 10.1186/s13662-015-0518-3
- [15] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, (2002).
- [16] A. Lavagno and P. N. Swamy, *q*-Deformed structures and nonextensive statistics, a comparative study, Phys. A 305, 1, (2002), pp. 310–315.
- [17] A. B. Malinowska and D. F. M. Torres, The Hahn quantum variational calculus, J. Optim. Theory Appl. 147, (2010), pp. 419–442.
- [18] D. N. Page, Information in black hole radiation, Phys. Rev. Lett. 71, 23, (1993), pp. 3743–3746.
- [19] D. Youm, q-deformed conformal quantum mechanics, Phys. Rev. D 62, 095009, 5, (2000).