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Abstract

Any discrete topological dynamical system can be extended to some hyper-
space dynamical system. So the natural question to know if a property of the base
system transfers on the extended one, and viceversa, arises. This note investigates
these connections relatively to various forms of sensitivity, a dynamical property
which is essential in the definition of some kind of chaos. Some results about these
relationships are given.
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1 Introduction
Given a dynamical system, a natural question arises: when its extension to some hyper-
space satisfies a dynamical property of the base space, and viceversa. This question has
a scientific starting point. In many fields, such as biology, demography, it is not enough
to know the behavior of an individual point in the space but it is necessary to see the
collective life, that is to say the movement of subsets in the space. This corresponds to
study the set valued dynamical system associated to the base system. In recent years
many authors investigated these kind of relationships by giving particular attention to
topological properties such as transitivity, weakly mixing, mixing. In particular Roman
Flores investigated the transitivity, and John Banks used the weakly mixing property to
obtain the transitivity for the induced map (see [2, 8, 13]).

Received August 24, 2016; Accepted October 31, 2016
Communicated by Martin Bohner



126 Annamaria Miranda

Among these properties sensitive dependence on initial condition, briefly sensitivity,
represents the central concept for the definition of chaos (see [1, 6, 9]). However, it is
surprising that, when the space is infinite, the sensitivity is a redundant property in the
definition of Devaney chaos (see [6] for the definition and [3] for the result). In [11],
Hou, Liao and Liu studied the sensitivity of systems induced by M-systems. Stronger
forms of sensitivity, formulated in terms of large subset of N have been introduced by
Moothathu in [14]. Roughly speaking, a discrete dynamical system is sensitive when
given a region in the space there are two points in the region such that at a time n the n-
th iterates of the two points are separated. The largeness of the set of integers for which
this happens gives an idea of the measure of the sensitivity. Therefore, other stronger
forms of sensitivity are obtained by enlarging this measure.

In this note we restrict our attention on the property of sensitivity, even in its stronger
forms. Namely, the aim of this paper is to study of the condition for which the sensi-
tivity, or stronger sensitivity, transfers to the extended system, and viceversa. In other
words, we investigate the relationships between the sensitivity of a dynamical system
and the sensitivity of the associated set valued discrete system. We will ask, in particu-
lar, when a discrete dynamical sensitive (resp. strongly sensitive) space satisfies that its
extension is also sensitive (resp. strongly sensitive). Some results about these relation-
ships are given. We refer to [6] for definitions not explicitly given.

2 Preliminaries
A pair (X, f) where X is a topological space and f : X → X is a continuous map, is
said to be topological dynamical system.

We need to recall some dynamical properties, well known in literature.

Definition 2.1. A dynamical system (X, f) is (topologically) transitive if for any pair
of nonempty open sets U and V there is a k ≥ 1 such that fk(U) ∩ V 6= ∅.

Stronger properties are the following.

Definition 2.2. A dynamical system (X, f) is weakly (topologically) mixing if for all
nonempty open sets U1, U2, V1 and V2 there exists k ≥ 1 such that fk(U1) ∩ V1 6= ∅ and
fk(U2) ∩ V2 6= ∅.

Definition 2.3. A dynamical system (X, f) is (topologically) mixing if for any pair of
non-empty open sets U and V there is a N ≥ 1 such that, for all k ≥ N fk(U)∩ V 6= ∅

Moreover, we define the following.

Definition 2.4. A point x is periodic if fk(x) = x for some k ≥ 1. The least k such
that this happens is called period of x.
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If X is a metrizable space, and it is metrized by d, we say that f has sensitive
dependence on initial conditions, in brief sensitive, if there is a constant δ > 0 such that
for every point x and every open set U containing x there is a y ∈ U and a k ≥ 1 such
that d(fk(x), fk(y)) ≥ δ.

A map which is transitive, sensitive and has a dense set of periodic points is called
Devaney chaotic, briefly D-chaotic (see [6]). However it is known that, when the space
is infinite, transitivity and density of periodic points, both topological properties in na-
ture, imply the sensitivity which is expressed in metric terms (see [3]). But sensitivity
is a fundamental concept for the definition of other kind of chaos, such as for example,
Kato’s chaos, introduced in 1996 (see [12]).

Now, since we consider extensions of the dynamical system (X, f) on set-valued
discrete topological dynamical systems, we need to recall how to topologize and to
metrize the hyperspace. The set of all nonempty closed subset of a topological space
X , denoted by 2X , can be topologized by the Vietoris topology, denoted by τV , where
V stands for Vietoris. A basis for τV is given by the collection of sets of the form

〈U1, U2, ..., Un〉 = {A ∈ 2X : A ⊆
n⋃
i=1

Ui and A ∩ Ui 6= ∅ for all i ≤ n},

where U1, U2, ..., Un are nonempty open subsets of X .
The Vietoris topology can be split in two topologies, that is to say it is the supremum

of two topologies,
τV = τ−V ∨ τ

+
V

where τ+V has as base the collection of sets of the form

U+ = {A ∈ 2X : A ⊆ V } (2.1)

and τ−V has as subbase the collection of sets of the form

W− = {A ∈ 2X : A ∩W 6= ∅} (2.2)

where U and W are nonempty open subsets of X .
Let (X, d) be a metric space. The set 2X can be also metrized by the Hausdorff

metric which we denote by Hd. Let A,B ∈ 2X , we say excess the real number

ed(A,B) = sup{d(a,B) : a ∈ A}. (2.3)

The Hausdorff metric on 2X is defined by

Hd(A,B) = max{ed(A,B), ed(B,A)}, (2.4)

for every A,B ∈ 2X .
If X is a compact space, the topology induced on 2X by the Hausdorff metric (2.4)

coincides with the Vietoris topology. Moreover these topologies agrees on K(X), the
set of all nonempty compact subset of a topological space X .

The most studied extended topological dynamical system is (K(X), f), where the
map f is defined by f(A) = f(A) for each A ∈ K(X).
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Definition 2.5. A point x is said to be almost periodic if for any arbitrary neighborhood
U 3 x there is a positive integer k such that {f l(x), f l+1(x), f l+2(x), ..., f l+k(x)}∩U 6=
∅ for every l ∈ N.

Definition 2.6. A topological dynamical system (X, f) is called M -system if f is tran-
sitive and the set of almost periodic points is dense in X .

Theorem 2.7 (Hou, Liao, Liu theorem). If (X, f) is a nonminimal M -system, then
f : K(X)→ K(X) is sensitive.

We have the following result.

Corollary 2.8. If (X, f) is Devaney chaotic, then f : K(X)→ K(X) is sensitive.

This note investigates the connections between the strong sensitivity of a given topo-
logical discrete dynamical system (X, f) and the strong sensitivity of (H(X), f), where
H(X) runs in the set of the extensions of X , in analogy with the some results already
known about the sensitivity.

3 Extensions and Compatibility
Evidently, since 2X contains the singletons of the spaceX , it can be seen as an extension
of X . More generally, we say that a H ⊂ 2X is an extension of X if H contains the
singletons. For example, the set of all compact subsets of a topological space X , K(X),
is an extension forX . Now, given a dynamical system (X, f) and an extensionH ⊂ 2X ,
we want to know when a map f : H → H extends the map f in such a way that (H, f)
is a dynamical system.

Definition 3.1. Given a dynamical system (X, f), a dynamical system (H(X), F ) ,
where H(X) ⊂ 2X , is said to be an extension of (X, f) if it contains a dynamical
system which is topologically conjugate to (X, f) that is to say:

1. H contains a subspace Y homeomorphic to X: ∃Y ⊂ H and a homeomorphism
h : X −→ Y such that

2. F|Y ◦ h = h ◦ f .

If (H(X), F ) is an extension of (X, f) and (X, f) embeds as a dense dynamical
system in (H(X), F ), that is to say the closure Y = H, then H is said to be dense
extension of (X, f).

As an example, given a dynamical system (X, f), then (K(X), F ), where K(X) =
{A ⊆ X : A is compact} equipped by the Vietoris topology and F : K(X)→ K(X) is
defined by F (A) = f(A), is a dense extension of (X, f).

Definition 3.2. We say that f : X → X is compatible with H provided that f(A) ∈ H
for every A ∈ H.
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Obviously, every map is compatible with F(X) = {A ∈ 2X : A is finite}. More-
over, every continuous map is compatible with K(X) = {A ∈ 2X : A is compact}, and
with C(X) = {A ∈ 2X : A is connected}.

Proposition 3.3. If f : X → X is compatible withH then there exists an extended map

f : H −→ H

defined by f(A) = f(A) for every A ∈ H.

The converse is not true. Indeed, if (X, f) is a dynamical system and (H, F ) is an
extension for (X, f), then the map f need not be compatible withH.

It is easy to check that the map

e : X ↪→ (2X , τV )

defined by e(x) = {x} for every x ∈ X , is an homeomorphism when it is restricted to
e(X), and e(X) is open. Moreover, if X is a metrizable space metrized by d, then the
map

e : X ↪→ (2X , Hd)

defined by e(x) = {x} for every x ∈ X , is an isometry when it is restricted to e(X).
Now, it follows that, in both cases (2X , τV ) and (2X , Hd), the dynamical system

(2X , F ), where F : 2X −→ 2X is defined by F (A) = f(A), for every A ∈ 2X , is an
extension for (X, f) but f is not compatible with 2X .

4 Some Results
Let X be a metric space and let (X, f) be a discrete dynamical system. Moreover,
let (H(X), f), where (H(X), Hd) is the Hausdorff metric space, be an extension for
(X, f). We investigate when the dynamical system (X, f) inherits the sensitivity, or
other stronger form of sensitivity, from (H(X), f), and, conversely, when these proper-
ties transfer from (X, f) to (H(X), f).

First of all we need to recall the following definition.

Definition 4.1. A map f of a metric space (X, d) to itself is sensitive iff there is a
constant δ > 0 such that for every point x and every open subset U of X containing x
there exist an element y ∈ U and an integer n ≥ 1 such that d(fn(x), fn(y)) ≥ δ, for
some δ > 0.

It is known that if X is a compact metric space, then the sensitivity of the extended
map on K(X) implies the sensitivity for the base map(see [10]). More generally, we
have the following result.

Theorem 4.2. If f : (H(X), Hd) → (H(X), Hd) is sensitive, then so is f : (X, d) →
(X, d) .
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Proof. The results immediately comes from the fact that the map

e : (X, d)→ (H(X), Hd)

defined by e(x) = {x} for every x ∈ X , is an isometry.
Suppose that f is sensitive. This means that for every A ∈ H(X) and every sub-

set U of H(X), open in the topology induced by Hd, there exist an element B ∈ U
and an integer n ≥ 1 such that Hd(f

n
(A), f

n
(B)) ≥ δ, for some δ > 0. Let ε > 0

and x ∈ X . Then the open ball BHd
({x}, ε) is an open set in the topology induced

by Hd. By the hypothesis there is E ∈ BHd
({x}, ε) and an integer n ∈ N such

that Hd(f
n
({x}), fn(E)) ≥ δ, for some δ > 0. Then there is an y ∈ E such that

Hd(f
n
({x}), fn({y})) ≥ δ. Now, since e is an isometry, we have

Hd(f
n
({x}), fn({y}) = d(fn(x), fn(y)),

completing the proof.

Stronger forms of sensitivity have been introduced by Subrahmonian Moothathu
in [14]. He considers two notions of largeness for subsets of N, the syndeticity and the
cofiniteness and uses them to define cofinite sensitivity and syndetical sensitivity.

A subset A ⊂ N is called cofinite if A \ N is finite, and A is called syndetic if
A is infinite and if A = {a1 < a2 < a3...} then there exists an M ∈ N such that
an − an−1 < M for every n ∈ N, where a0 = 0.

For a dynamical system (X, f), take U, V ⊂ X and let

Nf (U, V ) = {n ∈ N : fn(U) ∩ V 6= ∅}. (4.1)

This set enables Mothathu (see [14]) to reformulate the known properties of tran-
sitivity and mixing, and to introduce the new concept of syndetical transivity. Indeed,
from this new point of view, we have:

M1) f is transitive if for every pair of nonempty open sets U, V ⊂ X we have that
Nf (U, V ) 6= ∅.

M2) f is syndetically transitive if if for every pair of nonempty open sets U, V ⊂ X
we have that Nf (U, V ) is syndetic.

M3) f is mixing if for every pair of nonempty open sets U, V ⊂ X we have that
Nf (U, V ) is cofinite.

Moreover, Moothathu defines (see [14]) stronger forms of sensitivity in a similar way.
If X is metrized by a metric d, for U ⊂ X and δ > 0, let

Nf (U, δ) = {n ∈ N|∃y, z ∈ U : d(fn(y), fn(z) > δ}. (4.2)

Thus we have:
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M4) f is sensitive if there is δ > 0 with the property that for every nonempty open set
U ⊂ X we have that Nf (U, δ) 6= ∅.

M5) f is syndetically sensitive if there exists δ > 0 with the property that for every
nonempty open set U ⊂ X we have that Nf (U, δ) is syndetic.

M6) f is cofinitely sensitive if there exists δ > 0 with the property that for every
nonempty open set U ⊂ X we have that Nf (U, δ) is cofinite.

We investigate the connections between syndetically sensitivity (resp. cofinitely sen-
sitivity) of (H(X), f), whereH(X) runs in the set of the extensions of X .

Relatively to these stronger forms of sensitivity, we have the following result.

Theorem 4.3. If f : (H(X), Hd) → (H(X), Hd) is cofinitely (resp. syndetically) sen-
sitive, then so is f : (X, d)→ (X, d).

Proof. Let H(X) be an extension of the space X , and, let f be a compatible map.
Suppose that f : (H(X), Hd)→ (H(X), Hd) is cofinitely (resp. syndetically) sensitive,
with constant δ > 0. Now consider x ∈ X , ε > 0 and the open ball U = Bd(x, ε), then
the ball U = BHd

({x}, ε) is open in the topology induced by the Hausdorff metric. So,
by the hypothesis, Nf (U, δ) is syndetic (resp. cofinite). This implies that Nf (U, δ) is
syndetic (resp. cofinite). It is enough to observe that

1. Nf (U, δ) = Nf (U, δ).

2. Syndeticity is an hereditary property, while for cofiniteness we have that a set
containing a cofinite set is cofinite.

Indeed, if n ∈ Nf (U, δ), then there exist y, z ∈ U such that

d(fn(y), fn(z)) ≥ δ.

Then, since d(fn(y), fn(z)) = Hd(f
n
({x}), fn({y})), we have n ∈ Nf (U, δ). Con-

versely, if n ∈ Nf (U, δ), then there exist A,B ∈ U such that Hd(f
n
(A), f

n
(B)) ≥ δ.

It follows that there exist a ∈ A and b ∈ B such that d(fn(a), fn(b)) ≥ δ. Thus, since
A,B ⊂ U , we have n ∈ Nf (U, δ). In conclusion, the result immediately follows.

If f is a cofinitely (resp. syndetically) sensitive map, then f need not be a cofinitely
(resp. syndetically) sensitive map.

The converse of the previous result is not true, as the following example shows.

Example 4.4. A cofinitely sensitive map with an extension which not a sensitive map.
Let X be the cylinder S1 × I with the usual metric

ρ((e2πiα, x), (e2πiβ, y) = max{| e2πiα − e2πiβ |, | x− y |}.
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Let h : X → X be the product map f×g, where f is the rotation defined by f(e2πiα) =
e2πi(α+1), for every 0 ≤ α < 1 and g the tent map defined by g(x) = 1− | 2x − 1 |,
for every x ∈ I . Now, since g is mixing, we have g is cofinitely sensitive. Therefore
h is cofinitely sensitive. However h : K(X) → K(X) is not sensitive, as Gu shows
in [10, Example 3.7].

As seen, the converse of the previous theorem is not true. Anyway, if, in the defini-
tion, the open set U ⊂ H runs in the topology τ+V , we have the following result.

Theorem 4.5. Let (X, f) be a discrete topological dynamical system, where X is a
metrizable space, and (H, f) an extension of (X, f), where H is equipped with the
topology τ+V . Then the following conditions are equivalent:

1. f is cofinitely (resp. syndetically) sensitive;

2. f is cofinitely (resp. syndetically) sensitive.

Proof. 1. ⇒ 2. Let V be an open set in X . Then V + is an open set in the hyperspace
(H, τ+V ) and we have

Nf (V
+, δ) = Nf (V, δ).

It follows that, since by the hypothesis f is cofinitely (resp. syndetically) sensitive,
then Nf (V, δ) is cofinite (resp. syndetical). 2. ⇒ 1. This follows from the previous
theorem.

Glasner and Weiss in [9] proved the following result.

Theorem 4.6. A transitive system with a dense set of almost periodic points, that is to
say an M-system, is either minimal or sensitive.

Therefore, we have the following result.

Theorem 4.7. If (X, f) is a nonminimal M -system, then it is sensitive

This theorem is the starting point of our next results. Indeed, by using Moothathu
definitions M2,M3,M5,M6, we ask the following questions:

1. Is a mixing system with a dense set of almost periodic points either minimal or
cofinitely sensitive?

2. Is a syndetically transitive system with a dense set of almost periodic points either
minimal or syndetically sensitive?

In anology with the definition of M -system ( [11]) we introduce the definitions of
cofinitely-M-system and syndetically-M-system.

Definition 4.8. We call cofinitely-M-system any mixing dynamical system (X, f) such
that the set of almost periodic points is dense.
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Definition 4.9. We call syndetically-M-system any syndetically transitive dynamical
system (X, f) such that the set of almost periodic points is dense.

Theorem 4.10. If (X, f) is a mixing (resp. syndetically transitive) dynamical system
with at least two point, then f is cofinitely (resp. syndetically) sensitive.

Proof. Let (X, f) a dynamical system whereX is a metric space equipped with a metric

d. Fix u, v ∈ X such that u 6= v and take δ =
d(u, v)

2
. Since (X, f) is mixing (resp.

syndetically transitive) then, by definition M3) (resp. M2), for each open set U ⊂ X
we deduce that Nf (U,B(u, δ)) and Nf (U,B(v, δ)) are cofinite (resp. syndetic). Then,
since

Nf (U, δ) = Nf (U,B(u, δ)

or
Nf (U, δ) = Nf (U,B(v, δ),

it follows Nf (U, δ) is cofinite (resp. syndetical) and this means that f is cofinitely (resp.
syndetically) sensitive, by definition M5) (resp. M4) .

Immediately it follows that questions 1. and 2. have positive answers.

Corollary 4.11. If X, f) is a nonminimal cofinitely-M-system (resp. syndetically-M-
system), then f is cofinitely (resp. syndetically) sensitive.

From Theorems 4.6 and 4.11, we have the following result.

Theorem 4.12. If (X, f) is a mixing dynamical system (resp. syndetically transitive
dynamical system) with at least two points, then f : H(X) → H(X), where H(X) is
equipped by the Upper Vietoris topology, τV + , is cofinitely (resp. syndetically) sensitive.

Proposition 4.13. If (X, f) is a mixing (resp. syndetically transitive) dynamical sy-stem,
then f : K(X)→ K(X) is cofinitely (resp. syndetically) sensitive.

Proof. If (X, f) is a mixing (resp. syndetically transitive) dynamical system, then f :
K(X) → K(X), (K(X), τV ) is mixing (resp. syndetically transitive). Now, by Theo-
rem 4.10 f is cofinitely (resp. syndetically) sensitive.

Our questions have positive answers, as the following corollary shows.

Corollary 4.14. If (X, f) is a nonminimal, cofinitely-M-system (resp. syndetically-M-
system), then f : K(X)→ K(X) is cofinitely (resp. syndetically) sensitive.

Equivalently, this corollary says: If (X, f) is a nonminimal, mixing (resp. syndeti-
cally transitive) dynamical system such that the set of almost periodic points is dense,
then f : K(X)→ K(X) is cofinitely (resp. syndetically) sensitive.

In an analogous way, it is possible to introduce new definitions of chaos by using
the mixing (resp. syndetically-transitivity) property and to generalize Theorem 2.8.
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