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Abstract

In this paper, we study the existence of positive solutions of the Hahn difference
equation

−1

q
D2

q,ωu(t) = a(qt+ ω)f(u(qt+ ω)), t ∈ [ω0, d],

with linear boundary conditions. We apply a fixed point theorem in cones to show
the existence of at least one positive solution, in either the superlinear or sublinear
case. Here the Hahn difference operator Dq,ω is defined by

Dq,ωf(t) =
f(qt+ ω)− f(t)

t(q − 1) + ω
, t 6= ω0,

where ω0 =
ω

1− q
with 0 < q < 1, ω > 0, and d > ω0.

AMS Subject Classifications: 39A13, 39A70.
Keywords: Boundary-value problem, Krasnoselskii’s fixed point theorem, Green func-
tion, Hahn difference equation, positive solution.

1 Preliminaries
The existence of nonnegative solutions is important in studying of mathematical models
in science such as chemical, physical models, population or concentration models in
biology, and economical models. As we know, the cone sets, i.e., closed convex sets
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K of a Banach space X such that λK ⊂ K for all λ > 0 and K ∩ (−K) = {0} can
describe nonnegativity.

Recently many authors studied positive solutions of different types of boundary
value problems. Most of their results are based on Krasnoselskii’s work [6]. He worked
on nonlinear operator equations by using the theory of cones in Banach spaces.

In [2], the authors studied the existence of positive solutions of the second order
boundary value problem

−u′′(t) = a(t)f(u(t)), 0 6 t 6 1, (1.1)

αu(0)− βu′(0) = 0,

γu(1) + δu′(1) = 0,

}
(1.2)

with some conditions imposed on f, a and the constants of (1.2). It is shown that there
is a positive solution in both of the superlinear and the sublinear cases. A function f is
said to be superlinear (sublinear) if

f0 = 0 and f∞ =∞ (f0 =∞ and f∞ = 0),

where

f0 := lim
u→0

f(u)

u
, f∞ := lim

u→∞

f(u)

u
.

The authors used a fixed point theorem of Krasnoselskii, see [6]. More precisely, they
used a modified version of Krasnoselskii due to Guo [3], it reads as follows.

Theorem 1.1. Let M1 and M2 be two bounded open sets in a Banach space E such that
0 ∈M1, M1 ⊂M2. Let

A : K ∩
(
M2 \M1

)
−→ K

be completely continuous and let one of the following conditions

(1)‖Ax‖ 6 ‖x‖,∀x ∈ K ∩ ∂M1, and ‖Ax‖ > ‖x‖,∀x ∈ K ∩ ∂M2.

(2)‖Ax‖ > ‖x‖,∀x ∈ K ∩ ∂M1, and ‖Ax‖ 6 ‖x‖,∀x ∈ K ∩ ∂M2.

be satisfied. Then A has at least one fixed point in K ∩
(
M2 \M1

)
.

This paper is devoted to investigating positive solutions of (1.1)–(1.2) in the q, ω-
difference operator setting. More specifically, we show the existence of positive solu-
tions of the nonlinear Hahn difference equations of the form

−1

q
D2

q,ωu(t) = a(qt+ ω)f(u(qt+ ω)), t ∈ [ω0, d],

with boundary conditions

a11u(ω0)− a12Dq,ωu(ω0) = 0,

a21u(d) + a22Dq,ωu(d) = 0.

In the following section we state the main concepts of the q, ω-calculus which we
use in the subsequent sections.
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2 Introduction
Let N be the set of natural numbers and N0 := N ∪ {0}. For k ∈ N0 and 0 < q < 1, we
define the q-numbers

[k]q :=
1− qk

1− q
.

Let I be an interval of R containing ω0, where ω0 := ω/(1− q), and h denote the
transformation

h(t) := qt+ ω, t ∈ I.

One can see that

h(t)


> t, for t < ω0,

= t, for t = ω0,

< t, for t > ω0.

The transformation h has the inverse h−1(t) = (t− ω)/q, t ∈ I . The kth order iteration
of h is given by

hk(t) := h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸
k−times

(t) = qkt+ ω[k]q, t ∈ I, (2.1)

(hk(t))−1 := h−k(t) := h−1 ◦ h−1 ◦ · · · ◦ h−1︸ ︷︷ ︸
k−times

(t) =
t− ω[k]q

qk
, t ∈ I. (2.2)

Furthermore, {hk(t)}∞k=1 is a decreasing (an increasing) sequence in k when t > ω0

(t < ω0) with

ω0 =


inf
k∈N

hk(t), t > ω0,

sup
k∈N

hk(t), t < ω0.
(2.3)

The sequence {h−k(t)}∞k=1 is increasing (decreasing), t > ω0 (t < ω0) with

∞ =


sup
k∈N

h−k(t), t > ω0,

− inf
k∈N

h−k(t)), t < ω0.

(2.4)

Let f be a function defined on I . The Hahn difference operator is defined in [4] by

Dq,ωf(t) :=
f(qt+ ω)− f(t)
(qt+ ω)− t

, if t 6= ω0, (2.5)
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and Dq,ωf(ω0) = f ′(ω0), provided that f is differentiable at ω0, where q ∈ (0, 1) and
ω > 0. In this case, we call Dq,ωf , the q, ω-derivative of f . Finally, we say that f is
q, ω-differentiable, i.e., throughout I , if Dq,ωf(ω0) exists.

The right inverse for Dq,ω is defined in [1] in terms of Jackson–Nörlund sums as
follows. For a, b ∈ I , the q, ω-integral of f from a to b is defined to be∫ b

a

f(t)dq,ωt :=

∫ b

ω0

f(t)dq,ωt−
∫ a

ω0

f(t)dq,ωt, (2.6)

∫ x

ω0

f(t)dq,ωt := (x(1− q)− ω)
∞∑
k=0

qkf(xqk + ω[k]q), x ∈ I, (2.7)

provided that the series converges at x = a and x = b. It is known that if f is
continuous at ω0, then the series in (2.7) is uniformly convergent.

We summarize the results of the q, ω-calculus from [1] in the following theorem.

Theorem 2.1. Let f ,g be functions defined on I. The following statements are satisfied
on every compact subinterval of I which contains ω0.
(i) If f ,g are q, ω-differentiable at t ∈ I, then

Dq,ω(fg)(t) = Dq,ω(f(t))g(t) + f(qt+ ω)Dq,ωg(t).

(ii) If f is continuous at ω0, then the function

F (x) :=

∫ x

ω0

f(t)dq,ωt, x ∈ I,

is continuous at ω0. Furthermore, Dq,ωF (x) exists for every x ∈ I and

Dq,ωF (x) = f(x).

Conversely, ∫ b

a

Dq,ωf(t)dq,ωt = f(b)− f(a) for all a, b ∈ I.

Also, it is not difficult to see that the following statements hold.

(1) For k1, k2 ∈ N, we have∫ a

ω0

f(t)dq,ωt >
∫ hk2 (a)

hk1 (a)

f(t)dq,ωt, k1 > k2. (2.8)

(2) If t 6= ω0, then
(Dq,ωf)(h

−1(t)) = D 1
q
,−ω

q
f(t). (2.9)
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(3)

D 1
q
,−ω

q

(∫ h(t)

ω0

f(x)dq,ωx

)
= qf(t). (2.10)

D 1
q
,−ω

q

(∫ t

ω0

f(x)dq,ωx

)
= f(h−1(t)). (2.11)

Our purpose here is to give an existence result for positive solutions to the nonlinear
second order q, ω-difference equation of the form

−1
q
D2

q,ωu(t) = a(h(t))f(u(h(t))), t ∈ I = [ω0, h
−1(b)], (2.12)

with certain linear boundary conditions. The following lemma indicates that equation
(2.12) is equivalent to the equation

−1
q
D 1

q
,−ω

q
Dq,ωu(t) = a(t)f(u(t)), t ∈ I = [ω0, b]. (2.13)

Lemma 2.2. u is a solution of equation (2.13), if and only if u is a solution of equation
(2.12).

Proof. Let u be a solution of equation (2.13). Set G = Dq,ωu. Simple calculations,
using (2.9), show that

−1

q
D 1

q
,−ω

q
Dq,ωu(t) = −

1

q
D 1

q
,−ω

q
G(t)

= −1

q

G(h−1(t))−G(t)
h−1(t)− t

= −Dq,ωu(h
−1(t))−Dq,ωu(t)

t(1− q)− ω

= −
D 1

q
,−ω

q
u(t)−D 1

q
,−ω

q
u(h(t))

t(1− q)− ω
= a(t)f(u(t)), t ∈ [ω0, b].

On the other hand, we have

−1

q
D2

q,ωu(t) = −
1

q
Dq,ωG(t)

= −1

q

G(t)−G(h(t))
t− h(t)

= −1

q

D 1
q
,−ω

q
u(h(t))−D 1

q
,−ω

q
u(h2(t))

t− h(t)
.
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This implies that

−1

q
D2

q,ωu(h
−1(t)) = −1

q

D 1
q
,−ω

q
u(t)−D 1

q
,−ω

q
u(h(t))

h−1(t)− t

= −
D 1

q
,−ω

q
u(t)−D 1

q
,−ω

q
u(h(t))

t(1− q)− ω
= a(t)f(u(t)), t ∈ [ω0, b],

from which we obtain

−1

q
D2

q,ωu(t) = a(h(t))f(u(h(t))), t ∈ [ω0, h
−1(b)].

It is not difficult to see the converse is true.

So, we establish the existence of a positive solution of (2.13), under the boundary
conditions

αu(ω0)− βD 1
q
,−ω

q
u(ω0) = 0,

γu(b) + δD 1
q
,−ω

q
u(b) = 0,

}
(2.14)

where ρ := γβ + αδ + αγb− γαω0 > 0, α, β, γ, δ > 0. The functions a and f are
assumed to be nonnegative continuous functions for t ∈ [ω0, b], and a(t) 6= 0, on any
subinterval of [ω0, b]. We also assume that f is either superlinear or sublinear.

3 Green’s Function
In this section, we write the solution of (2.13)–(2.14) in a form of q, ω-integral involving
the Green’s function. This Green’s function takes the same form of the classical case if
q → 1, and ω → 0.

Lemma 3.1. Any solution of (2.13)–(2.14) satisfies the integral equation

u(t) =

∫ b

ω0

G(t, s)a(s)f(u(s))dq,ωs, (3.1)

where G(t, s) is giving by

G(t, s) =
1

ρ


((γb+ δ)− γt)(β − αω0 + αs), ω0 6 s 6 t 6 b,

((γb+ δ)− γs)(β − αω0 + αt), ω0 6 t 6 s 6 b.
(3.2)

G(t, s) is called the Green’s function.
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Proof. The solution of (2.13) takes the form

u(t) = c1t+ c2 +

∫ t

ω0

[s− t]a(s)f(u(s))dq,ωs, (3.3)

where c1 and c2 are arbitrary constants. For a solution u that satisfies (2.14), we get

c1 = −α
ρ

∫ b

ω0

(γs− (γb+ δ))a(s)f(u(s))dq,ωs, (3.4)

c2 =
−β + αω0

ρ

∫ b

ω0

(γs− (γb+ δ))a(s)f(u(s))dq,ωs. (3.5)

Substituting in (3.3) we obtain the form (3.1).

In the following we give some estimates for the Green’s function which will be the
main tools in getting the positive solution of (2.13)–(2.14). Clearly G(t, s) > 0.

Lemma 3.2. Let k1 > k2, where k1, k2 ∈ N, and let

σ = min

{
γ(b− hk2(b)) + δ

bγ + δ
,
β − αω0 + αhk1(b)

β − αω0 + αb

}
.

Then
G(t, s) > σG(s, s), hk1(b) 6 t 6 hk2(b), ω0 6 s 6 b (3.6)

and
G(t, s) 6 G(s, s), ω0 6 t, s 6 b. (3.7)

Proof. If hk1(b) 6 t 6 hk2(b), then

G(t, s)

G(s, s)
=


bγ + δ − γt
bγ + δ − γs

>
γ(b− hk2(b)) + δ

bγ + δ
, s 6 t,

β − αω0 + αt

β − αω0 + αs
>
β − αω0 + αhk1(b)

β − αω0 + αb
, t 6 s.

(3.8)

Also (3.7) follows from

G(t, s)

G(s, s)
=


bγ + δ − γt
bγ + δ − γs

6 1, s 6 t,

β − αω0 + αt

β − αω0 + αs
6 1, t 6 s.

(3.9)

The proof is complete.
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4 Existence of Positive Solutions
In this section, we establish the existence of a positive solution of (2.13)–(2.14) by
applying Theorem 1.1.

Throughout the rest of the paper, we denote by X = C[ω0, b] the space of all con-
tinuous complex valued functions with maximum norm ‖ · ‖∞. Let A : X −→ X, be
defined by

Au(t) =

∫ b

ω0

G(t, s)a(s)f(u(s))dq,ωs.

Define the cone K in X by

K =

{
u ∈ X : u > 0, min

hk1 (b)6t6hk2 (b)
u(t) > σ‖u‖∞

}
, (4.1)

where k1 > k2 such that k1, k1 ∈ N, and σ be as in Lemma 3.2.

Lemma 4.1. A is a positive operator in K, that is,

A(K) ⊂ K. (4.2)

Proof. Clearly A(u) > 0 for u ∈ K. Using Lemma 3.2, we get

min
hk1 (b)6t6hk2 (b)

A(u(t)) = min
hk1 (b)6t6hk2 (b)

∫ b

ω0

G(t, s)a(s)f(u(s))dq,ωs

> σ

∫ b

ω0

G(s, s)a(s)f(u(s))dq,ωs

> σ

∫ b

ω0

G(t, s)a(s)f(u(s))dq,ωs ∀t ∈ [ω0, b]

min
hk1 (b)6t6hk2 (b)

A(u(t)) > σ‖Au‖∞.

The proof is complete.

Theorem 4.2. The problem (2.13)–(2.14) has at least one positive solution in the su-
perlinear and sublinear cases.

Proof. First we consider the superlinear case. Since f0 = 0, for ε satisfying

0 < ε

∫ b

ω0

G(s, s)a(s)dq,ωs 6 1,

we can choose δ1 > 0 such that f(u) 6 εu, for 0 < u 6 δ1. Define the set

M1 := {u ∈ X : ‖u‖∞ < δ1}. (4.3)
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Assume u ∈ K and ‖u‖∞ = δ1. Then from Lemma 3.2, we have

Au(t) =

∫ b

ω0

G(t, s)a(s)f(u(s))dq,ωs

6
∫ b

ω0

G(s, s)a(s)εu(s)dq,ωs

6 ‖u‖∞.

Hence
‖Au‖∞ ≤ ‖u‖∞. u ∈ K ∩ ∂M1. (4.4)

In view of f∞ =∞, there exists δ∗ such that f(u) > µu, u > δ∗. where µ satisfies

µσ

∫ hk2 (b)

hk1 (b)

G(hk0(b), s)a(s)dq,ωs > 1. (4.5)

Here k0 ∈ N, is such that k1 6 k0 6 k2. Let δ2 = max{2δ1, δ∗/σ}, and let

M2 := {u ∈ X : ‖u‖∞ < δ2}. (4.6)

For u ∈ K and ‖u‖∞ = δ2, we have

min
hk1 (b)6t6hk2 (b)

u(t) > σ‖u‖∞ > δ∗.

We deduce that

Au(hk0(b)) =

∫ b

ω0

G(hk0(b), s)a(s)f(u(s))dq,ωs

>
∫ hk2 (b)

hk1 (b)

G(hk0(b), s)a(s)f(u(s))dq,ωs

> µ

∫ hk2 (b)

hk1 (b)

G(hk0(b), s)a(s)u(s)dq,ωs

> µσ‖u‖∞
∫ hk2 (b)

hk1 (b)

G(hk0(b), s)a(s)dq,ωs

> ‖u‖∞.

This means ‖Au‖∞ > ‖u‖∞ for u ∈ K∩∂M2. Therefore, by the fixed point Theorem1.1,
there exists a fixed point u of A,
where u ∈ K ∩ (M2 \M1), i.e., δ1 6 ‖u‖ 6 δ2.

For the sublinear case (f0 = ∞, f∞ = 0), we can choose δ′ > 0 such that f(u) >
µ′u for 0 < u 6 δ′, where

µ′σ

∫ hk2 (b)

hk1 (b)

G(hk0(b), s)a(s)dq,ωs > 1. (4.7)
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Set
M ′

1 := {u ∈ X : ‖u‖∞ < δ′}.
In a similar way to the first case, if u ∈ K and ‖u‖∞ = δ′, we get

Au(hk0(b)) =

∫ b

ω0

G(hk0(b), s)a(s)f(u(s))dq,ωs

> µ′σ‖u‖∞
∫ hk2 (b)

hk1 (b)

G(hk0(b), s)a(s)dq,ωs

> ‖u‖∞.
Thus

‖Au‖∞ > ‖u‖∞, u ∈ K ∩ ∂M ′
1. (4.8)

Since f∞ = 0, there is a δ̃, such that f(u) 6 ε′u, for u > δ̃, where

0 < ε′
∫ b

ω0

G(s, s)a(s)dq,ωs 6 1. (4.9)

Set
M ′

2 := {u ∈ X : ‖u‖∞ < ξ},
where ξ will be specified according to the following cases.

Case (1). f is bounded, say f(u) 6 N for all u ∈ (0,∞). In this case, choose

ξ := max

{
2δ′, N

∫ b

ω0

G(s, s)a(s)dq,ωs

}
,

so that for u ∈ K with ‖u‖∞ = ξ, we have

Au(t) =

∫ b

ω0

G(t, s)a(s)f(u(s))dq,ωs 6 N

∫ b

ω0

G(s, s)a(s)dq,ωs 6 ξ,

and consequently ‖Au‖∞ 6 ‖u‖∞.
Case (2). f is unbounded. Then choose ξ > max{2δ′, δ̃} and such that

f(u) 6 f(ξ) for 0 6 u 6 ξ.

For u ∈ K and ‖u‖∞ = ξ, we have

Au(t) =

∫ b

ω0

G(t, s)a(s)f(u(s))dq,ωs

6
∫ b

ω0

G(s, s)a(s)f(ξ)dq,ωs

6 ε′ξ

∫ b

ω0

G(s, s)a(s)dq,ωs 6 ξ.

Hence ‖Au‖∞ 6 ‖u‖∞ and for u ∈ K∩∂M ′
2,we have ‖Au‖∞ 6 ‖u‖∞. By the second

part of the fixed point Theorem 1.1, it follows that problem (2.13)–(2.14) has a positive
solution and this completes the proof.
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[4] W. Hahn, Über Orthogonalpolynome, die q-Differenzenlgleichungen genügen,
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