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Abstract

We investigate a new quadratic integral equation of arbitrary orders with maxi-
mum and prove an existence result for it. We will use a fixed point theorem due to
Darbo as well as the monotonicity measure of noncompactness due to Bana$ and
Olszowy to prove that our equation has at least one solution in C|0, 1] which is
monotonic on [0, 1].
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1 Introduction

In several papers, among them [1,11], the authors studied differential and integral equa-
tions with maximum. In [6-9] Darwish et al. studied fractional integral equations with
supremum. Also, in [4,5], Caballero et al. studied the Volterra quadratic integral equa-
tions with supremum. They showed that these equations have monotonic solutions in
the space C'[0, 1]. Darwish [7] generalized and extended the Caballero et al. [4] results
to the case of quadratic fractional integral equations with supremum.

In this paper we will study the fractional quadratic integral equation with maximum

(Ty)(t) / "¢/ (s)k(t, 5) max(p (s [Y(7)]
L) Jo (e(t) = @(s))' 7

where f,o: J >R, T:C(J) > C(J),o0:J— Jandk:J x J — Ry.

By using the monotonicity measure of noncompactness due to Bana$ and Olszowy
[3] as well as the Darbo fixed point theorem, we prove the existence of monotonic
solutions to (1.1) in C10, 1].

Now, we assume that (F, || - ||) is a real Banach space. We denote by B(x,r) the
closed ball centred at x with radius r and B, = B(0,r), where 6 is a zero element of F.
We let X C E. The closure and convex closure of X are denoted by X and ConvX,
respectively. The symbols X + Y and A\Y are using for the usual algebraic operators
on sets and My and Ng stand for the families defined by Mp = {A C E : A #
0, Aisbounded} and Mp = {B C Mg : B is relatively compact}, respectively.

ds, te J=10,1, 0<p <1,
(1.1)

y(t) = ft) +

Definition 1.1 (See [2]). A function p : M — [0, +00) is called a measure of non-
compactness in F if the following conditions:

1° 0 A{X eMg: u(X)=0} =keru C Ng,

2° if X C Y, then pu(X) < pu(Y),

3° p(X) = u(X) = u(ConvX),

42 p(AX + (1= NY) < A\u(X) + (1= Mu(Y),0 < A < 1and

5° if (X,,) is a sequence of closed subsets of Mg with X, O X, 1(n =1, 2, 3, ...)
and lim u(X,) = 0then X, =N, X,, # 0,
n—oo

hold.

We will establish our result in the Banach space C'(J) of all defined, real and con-
tinuous functions on J = [0, 1] with standard norm ||y|| = max{|y(7)| : 7 € J}. Next,
we define the measure of noncompactness related to monotonicity in C'(.J); see [2, 3].
Let ) #Y C C(J) be a bounded set. For y € Y and € > 0, the modulus of continuity
of the function y , denoted by w(y, €), is defined by

w(y,e) = sup{ly(t) —y(s)| : t,s € J, |t —s| < e}
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Moreover, we let
w(Y,e) = sup{w(y,e) 1y € Y}

and
wo(Y) = llir(l) w(Y,e).
Define
d(y) = s (ly(t) = y(s)[ = [y(t) — y(s)])
and

d(Y') = supd(y).

yeyY

Notice that all functions in Y are nondecreasing on J if and only if d(Y') = 0.
Now, we define the map x on M¢ () as

u(Y) = d(Y) +wolY).

Clearly, p satisfies all conditions in Definition 3, and therefore, it is a measure of non-
compactness in C'(J) [3].

Definition 1.2. Let P : M — E be a continuous mapping, where () # M C E. Suppose
that P maps bounded sets onto bounded sets. Let Y be any bounded subset of M with
w(PY) < au(Y), a > 0, then P is called verify the Darbo condition with respect to a
measure of noncompactness /.

In the case o < 1, the operator P is said to be a contraction with respect to .

Theorem 1.3 (See [10]). Let ) # Q C E be a closed, bounded and convex set. If
P : Q — Q) is a continuous contraction mapping with respect to i, then P has a fixed
point in 2.

We will need the following two lemmas in order to prove our results [4].

Lemma 1.4. Let r : J — J be a continuous function and y € C(J). If, fort € J,

(Fy)(t) = max ly(7)],

then Fy € C(J).

Lemma 1.5. Let (y,,) be a sequence in C(J) and y € C(J). If (yn) converges to
y € C(J), then (Fy,) converges uniformly to Fy uniformly on J.
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2 Main Theorem

Let us consider the following assumptions:
(a1) f € C(J). Moreover, f is nondecreasing and nonnegative on .J.

(ay) The operator T" : C'(J) — C(J) is continuous and satisfies the Darbo condition
with a constant ¢ for the measure of noncompactness ;. Moreover, Ty > 0 if
y > 0.

(a3) There exist constants a, b > 0 such that |(T'y)(t)| < a+ blly|| Vy € C(J), t € J.
(as) The function ¢ : J — R is C"'(.J) and nondecreasing.

(as) The function « : J x J — R is continuous on J x J and nondecreasing V¢ and s

separately. Moreover, k* = sup  k(t, ).
(t,s)eJxJ

(ag) The function o : J — J is nondecreasing and continuous on .J.

(a7) 3 7o > 0 such that

K*ro(a + brg)

rrn W) - e0) < @.1)

11+

and —270 < (o) = pl0)

r'pg+1

Now, we define two operators X and F on C'(.J) as follows

(
(

- 1 ( )"i l, S) maxo o(s)] ’y(7—>| s
00 = 155, E e 2
and
Fo)) = 10+ T (Ko)0), 23

respectively. Solving (1.1) is equivalent to find a fixed point of the operator F.
Under the above assumptions, we will prove the following theorem.

Theorem 2.1. Assume the assumptions (a1) — (a7) are satisfied. Then (1.1) has at least
one solution y € C(J) which is nondecreasing on J.

Proof. First, we claim that the operator F transforms C'(.J) into itself. For this, it is
sufficient to show that if y € C'(J), then Ky € C(J). Lety € C(J) and ¢y, t, € J
(t1 < ty) such that |ty — t1]| < ¢ for fixed € > 0, then we have

[(Ky)(t2) — (Ky)(t1)]
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[ Pt mx )
o

B) w(tz) 2(5))1-7
'( Htl, maxogs)] ly(7)]|
/ (o) — p(s)t? ds‘
1 2y (s)k (tz, )maX[oUsn ly(T )\ds
=10 |, (90(752) 2(s))1 -7
2 p/( tl, maxi o(s) [4(7)|
/ EriEa ds‘
1 t2 90/() (tl, 8) maxjoo(s) [Y(7)]
1) / COEr O
B @ (s)k(tr, $) max g (s)] ‘y(T)‘dS
0 (plta) —p(s)
1 B (s)k(t1, 8) maxo (s) [y(7)] .
T / (olt2) — gl ©
_/tl ¢ (s)r(t1, 8) maxo0) ly(0)]
0 (plt) —p(s)
L (S)lalts,5) — alty, )| masp o ()]
—rw)/o (o(t) — o(s)17 !
L[ O s )y L
T ), (ol ~ ) s+ ¢ / sl 5)

x@'(s) [(p(t2) — ()" = (o (1) p(s))"! |[(1;g6(1§§]| y(7)| ds

Wl ) sl
< Tg) ) (o) — o) T T ()

Il 5 |lyll
x [(p(t) = ¢(0))” = ((t2) — 9(0))” + 2(p(ta) — ¢(t1))"]
< (e (plt) = pO) + I (oltn) = )
[yl 25|yl
< T e (ol = 90+ et ) 4
where we used
we(e,.) = sup  |k(t,s) — k(T 3)|

t, TeJ, [t—7|<e
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and the fact that p(t1) — »(0) < @(t2) — ¢(0). Notice that, since the function & is
uniformly continuous on J x J and the function ¢ is continuous on ./, then when ¢ — 0,
we have that w(e,.) — 0 and w(p, ) — 0.

Therefore, Ky € C(J) and consequently, Fy € C(J).

Now, for t € J, we have

)0 [ et o) mesosn ),

El < [ro+ e

£)
oyl 4
< 11+ A ) P ()l

< I+ +rl2w1> o1y - o).

Hence

17 < 1+ ) - ooy,

By assumption (a7), if ||y|| < 7o, we get

(a + bro)r*rg

F (1)~ 2(0)

[Fyll < |fll+
< 7.

Therefore, 7 maps B,, into itself.

Next, we consider the operator F on the set B, = {y € B,, : y(t) >0, Vt € J}. It
is clear that B:g # () is closed, convex and bounded. By these facts and our assumptions,
we obtain F maps B, into itself.

In what follows, we will show that F is continuous on B:g. For this, let (y,,) be a
sequence in B:,g such that y,, — y and we will show that Fy, — Fy. We have, for
teJ,

ds

(t) / "' (s)k(t, 8) maxo,o(s)) [Yn(7)]
0 (p(t) — p(s))=7#
(Ty)@) /t ©'(s)k(t, s) maxoq(sy [y(7)]

0 (o(t) — (s))'=7

ds

(T00)() [ /6ol ) max ),
S‘ T () / COEr O
() [ ¢()n(ts) ma x[ogs]w .
T() / (0~ o) d‘

(Ty)(t) [ & (n(t,s)m 00<s]|yn< ol

*‘ T(5) / COEr O
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@) [ Al 5 e ()]
I(5) / (o) <>>1—ﬂ ¢
|(Ty,) (t (t)] ¢'(s) t s \max[(]o |y (T)]
< / EEIE

(Ty) (t | (s)|k(t
i I'(8) /0 (p(t) — gp(s))lfﬁ ds.

By applying Lemma 1.5, we get

max — max
[070(8)]\?; n(7)] max [y ()]

1o (p(1) — 0(0)° | Tyn — Ty

Fyn — F <
[ Fyn = Fyll < TG+ 1)
K*(a + bro) (p(1) — ¢(0))?llyn — y 2.5)
L(B+1) ' '
By the continuity of 7", dn; € N such that
el'(8+1)

Ty, — Tyl < Vn > ny.

T 2K (90(1) —¢(0))7’
Also, dn, € N such that

el(B+1)
= 2r%(a + bro) (p(1) — ¢(0))#’

Now, take n > max{ny, no}, then (2.5) gives us that

lyn —yl < Vi > ny.

| Fyn — Fy|| <e.

This shows that F is continuous in B:,g.

Next, let Y C B:g be a nonempty set. Let us choose y € Y and ty,t, € J with
[ty — t1] < e for fixed € > 0. Since no generality will loss, we will assume that t5 > ¢;.
Then, by using our assumptions and (2.4), we obtain

(Fy)ta) - (Fo)lor)
< 1f(t2) = 0|+ (To) 62) (Cp)(02) — (T2 () 1)
FIT0) (1) (y)(0) — (T) (1) (Ko (1)
< W(f,2) + ) B () () — (Ko)(b)| +1(To)(Es) — (Ty)(e)] 10w 1)
<wtr,e) + A Lo 60 - 07 + 207wt
w(Ty, &)llylls" ((t) — (0))”
r'B+1)

% [wele, ) (0(1) — ¢(0))” + 26" (w(ep, €))"]

<w(fe) +
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K*ro(p(1) — ¢(0))”

NEE w(Ty,e).
Hence,
oFe) < w(f2) + NI (e, )(e(1) 90 + 26 (ol )
K*1o(p(1) — 9(0))”
NCESR
Consequently,
WFY,e) < wif.e)+ b0 T (1) = p(0)? + 25w, )]
T ’ r@+1) =57 ’
K*1o(p(1) — 9(0))”
+ T(G+1) w(TY,e).

The uniform continuity of the function x on J x J and the continuity of the functions f
and ¢ on .J, implies the last inequality becomes

H%(?E?; f;(o))ﬁwom/)- (20

In the next step, fix arbitrary y € Y and ¢1,%5 € J with t, > 1. Then, by our assump-
tions, we have

WO(FY) S

(Fy)ta) - <y><t1>|—[<fy><t2> (Fy)(tr)
_ Ty)(t2) [ ¢'(s)k(ta, s) maxo (s |y(7)] <
“f“” R AR v R
oy @) [ ), ) maxp )]
USRS E) / (olt) — g ? "
) (T))(ts) [ & sl &) maxpoio [0(7)]
{f“” T(5) | (o) o) ? "
oy @) [ ), ) e )]
U A E) / (o) — o(s)) 7 d]
< {1f(t2) — F(00)] — [F(2) — FE))
+‘<Ty><t2> o ), ) Moo )],
0B Jo (olta) —pls) P
Tyt / ()1, ) iy ()]
TB) Jo  (olta) —pls)t?
(T)(t) [ @ ()t 8) maxpoey [9(7)]
*‘ I() / (olt2) — o) ©
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_ (Ty)(t) / " @ (s)(t, s) maxiooe) ly(T)]
LB Jo (p(t1) — p(s))7
([t et s o,
L) Jo (p(ta) — p(s))7
_ (Ty)(t) / 2 (8)#(t2, 8) max|oq(s)) [Y(7)] ds}

I(3) (o(t2) — ()1
(Ty)(t1) [ ¢'(s)k(t2, s) max(o o)) |y(T)]
* [ ] / COEE O

I'(p
(Tx)(t) [ ¢ (s)k(t s) maxpoe(s) |Y(7)] 5
r(p /0 (p(t1) — p(s) 7 ! ]}
< UTy)(t2) = (Ty) ()] = [(Ty)(E2) — (Ty) ()]}

- L'(B)
2o (s )Fu‘(t2 S) maX[Oa(s] ly(7)| 5
<) B A !
Ty tl t2 / t2 S maX[Oas |y(7—)|d8
p(s))t=F
) maX[Oas |y( )|

/tl 's t1 s)
(p(t1) — @(s))17
_ { / # (5)r(ta, 8) maxio o [y(7)]
0 (@(t2) —p(s))t=5
B t1 w/(s)m(tl,s) max[o’g(s)] |y(7’)| <
/0 (olt) —p(s)8 H 2.7)
But
/ ¢'(s)rk (tz, §) Max(o o(s)] [Y(7 )\ds_/“ @ (8)k(t1, §) max(o e [y(7)]
0 (ot )—90( NP 0 p(t) — p(s))=?

(
= > tz 5) ) e )l [t ) max e ()]
/o O / (o) — (o) ©

,

ds

2 o/( t §) MaX[o 4 (s " (8)k(ty, 8) Maxg o (s T
+/ ¢'(s)k(ts, ol_)]ﬁly()lds_/ ¢'(s)k(t1, s) [o,<1_>}5|y()|d8
0 (s)) 0 (p(t2) — w(s))
tl / t oS tl ! t bl o(s
[ Ol [ PO st lo),
0 (s)) 0 (p(t1) — w(s))
B /t2 ©'(s) t2 s) — K t1 §)) Maxg,o(s)] !y(T)’d
= 5 S
0 —p(s))
t /
2¢'( tl s) maXOas)] |y (7)]
+/ (5))17 ds
+ [k — () = (pltn) = ()] g ly(r)lds.
0 ,o(s
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Since (g, 8) > K(t1, s) (m(t s) is nondecreasing with respect to t), we have
2 o/ (5)(K(ta, 8) — t AX[0,0(s
/ 2,8) — kit 3))H1 P;[o ) |y(7 )|ds >0 (2.8)
—¢(s))
. 1
and, since > — for s € [0,;) then

(ip(t2) —90( NPT (p(t) = (s))' 7

/0190( s)k(tr, 5)[(o(t2) — @(5))" ™" = (p(tr) — ()" max [y(7)|ds

[0,0(s)]
©'(8)K(t1, 5) maxp o (s) |y (7)] <
*/tl COEr O

- /0 )t ) [(elt2) — 9(5) " = (oltr) — 9(s))*!] max [y(r)lds

[0,0(t1)]
+/t2 %0/<5)"0(t1,t1> maxo,q(t1)] |y(7)|
t

1 (o(t2) = (s))17
=K max |y(7 . ¢'(s)ds _ " ¥'(s)ds
- <t1’t1)[00(t1)]| y(7) [/0 (p(ta) — p(s))i—0 /0 (p(t1) — p(s))7
B8 _ _ g
=n(t1,t1)((p(t2> ©(0)) ﬁ(s&(tl) ©(0)) nax ()|
- (2.9)

Finally, (2.8) and (2.9) imply that

/tz ¢'(5)k(t2, s) Max|g o(s)] |y(7')|d8 - /t1 ¢’ (s)k(t1, s) max o(s) |y(7)]
0 (p(t2) = ()17 0 ((t1) = p(s)'=7

The above inequality and (2.7) leads us to

[(Fy)(t2) — (Fy)(t)] = [(Fy)(t2) — (Fy)(ta)]
< [(Ty)(ta) = (Ty) ()| = [(Ty) (t2) = (Ty)(11)]
B I'(B)
" / ©'(5)k(t2, 8) Max o(s)] ’Z/<7)|d8
0 (t2) — p(s))7
)5

d(Ty).

ds > 0.

(¢
< Frolp(l) = ¢(0)
- L(B+1)
Thus,

and therefore,

d(FY) < ’Q*TO(“)(I)J: g0<0))Bd(TY). (2.10)
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Finally, (2.6) and (2.10) give us that

wo(FY) + d(FY) < wrro(p(1) — 9(0))° (wo(FY) + d(TY))

I'pg+1)
or
rok*(¢(1) — ¢(0))”
FY) < TY
< K*CTO(QD(l) — SO(O))/B (Y)
r'B+1)
. K*TocC B - . .
Since TG+1) < (p(1) — (0))™", F is a contraction operator with respect to .
Finally, by Theorem 1.3, F has at least one fixed point, or equivalently, (1.1) has at
least one nondecreasing solution in B,,. This finishes our proof. [

Next, we present the following numerical example in order to illustrate our results.

Example 2.2. Let us consider the following integral equation with maximum

y(t) = arctan ¢ + y(t) / PV 4 st maXp ) [Y(7)
SU(1/2) Jo 2v/s+ 1V Vi+1— s+ 1
Notice that (2.11) is a particular case of (1.1), where f(t) = arctant, (T'y)(t) = y(t)/5,
B=1/2,0(s) =Vs+1,k(ts) =vVit2+s?and o(t) = In(t + 1).
It is not difficult to see that assumptions (a1), (as), (a3), (a4) , (a5) and (ag) are
verified with || f|| = 7 /4, ¢ =1/5,a = 0,b=1/5and x* = V2.
Now, the inequality (2.1) in assumption (a7) takes the expression

T V2VV2-1

ds, teJ. (211

2
S YsvYve .2 o
4 T sr(3j2) 0="0
which is satisfied by o = 1. Moreover,
cK*ro \/§ B 1
= ~0.32 < (p(1) — ¢(0)) P = ——— = 1.56.
rE+1) 5I(3/2) (v(1) (0)) V2 -1

Therefore, by Theorem 2.1, (2.11) has at least one continuous and nondecreasing solu-
tion which is located in the ball B;.
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