
Advances in Dynamical Systems and Applications

ISSN 0973-5321, Volume 11, Number 1, pp. 59–65 (2016)

http://campus.mst.edu/adsa

Unique Existence and Nonexistence of

Limit Cycles for a Classical Liénard System

Makoto Hayashi

Nihon University

Department of Mathematics

College of Science and Technology

7-24-1, Narashinodai, Funabashi, Chiba, 274-8501, Japan

mhayashi@penta.ge.cst.nihon-u.ac.jp

Abstract

J. Graef in 1971 has studied the uniformly boundedness of the solution or-

bits under some condition and further proved the existence of limit cycles by the

Poincaré–Bendixson’s theorem. Recently, M. Cioni and G. Villari in 2015 gave the

same result as that of J. Graef under weaker conditions. In this paper, the unique

existence and the nonexistence of limit cycles for a classical Liénard system are in-

vestigated under the recent conditions. It shall be shown that our results are applied

to two concrete examples.
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1 Introduction

In this paper, sufficient conditions in order that a classical Liénard system

dx

dt
= y − F (x),

dy

dt
= −g(x) (L)

has a unique limit cycle or no limit cycles are discussed, where F (x) and g(x) are

continuous on an open interval I which contains the origin. The functions F (x) and g(x)
satisfy smoothness conditions for the uniqueness of solutions of initial value problems.

The qualitative property of the limit cycles of system (L) has studied by many math-

ematicians, physicists, economists and engineers and so on. Thus, the results play an

important role to resolve the scientific phenomenon. Our purpose is to discuss the fol-

lowing two cases under the recent condition in [1].
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• Nonexistence of limit cycles and Global unstability of solution orbits.

• Unique existence of limit cycles.

Throughout, we assume that the standard conditions for system (L)

(H1)
g(x)

x
> 0, (H2) g(x)F (x) < 0 for |x| < ǫ and ǫ is small

are satisfied. We see from these conditions that the equilibrium point is the origin only

and it is unstable.

J. Graef [4] in 1971 has studied the uniformly boundedness of the solution orbits

under the condition

(C1) lim
x→±∞

F (x)±G(x) = ±∞, where G(x) =

∫ x

0

g(ξ)dξ.

Further, the existence of limit cycles was proved under the conditions (C1) and

(C2) ∃k > 0 such that F (x) ≥ A (x ≥ k) and F (x) ≤ −A (x ≤ −k)

for some fixed constant A.

Recently, M. Cioni and G. Villari [1] in 2015 gave by the energy level comparison

method the following.

Proposition 1.1. System (L) has at least one limit cycles if the conditions

(C3) lim sup
x→±∞

G(x)± F (x) = +∞,

(C4) ∃K1 > ∃K2 such that F (x) ≥ K1 (x > β > 0), F (x) ≤ K2 (x < α < 0)

are satisfied.

This is the same result as in [4], but remark that (C3) and (C4) are an improvement

of (C1) and (C2), respectively.

We are interesting in the case of which (C3) is satisfied, but (C4) is not satisfied. As

the result, we give a simple criterion for the nonexistence of limit cycles of system (L)

with these conditions. Further, we state the unique existence of the limit cycle under the

conditions (C3) and (C4) by using the uniqueness theorem in the author’s method [6,

8]. This is a partial improvement of [1]. These results are stated and proved in the next

section. In Section 3, our results are applied to the interesting examples and a criterion

for the nonexistence of limit cycles is given simply. We also note that the results for

these systems are not given in the well-known textbooks such as [9].

2 Main Results and Proofs

From (H2), we divide the results to four cases by whether the curve y = F (x) intersect

the x-axis.
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(i) ∄a1, ∄a2, (ii) ∃a2 > 0, (iii) ∃a1 < 0, (iv) ∃a1 < 0 < ∃a2,

where ai (i = 1, 2) are solutions of the equation F (x) = 0.

First, we give our results for the nonexistence of limit cycles. The following plays a

fundamental role for our purpose.

Lemma 2.1 (See [3]). If the plane curve (F (x), G(x)) has no intersecting points with

itself for all x ∈ (a, b) and a < 0 < b, system (L) has no limit cycles contained in the

domain

D1 = {(x, y) | a < x < b, y ∈ R} or D2 = {(x, y) | x < b, y ∈ R} or

D3 = {(x, y) | a < x, y ∈ R}.

The following is clear from the above lemma or [5, Lemma 3.1].

Theorem 2.2 (Case (i)). If the curve y = F (x) doesn’t intersect the x-axis except

the origin, system (L) has no limit cycles and the equilibrium point (0, 0) is global

unstability.

The following results are the case of which the condition (C4) are not satisfied.

Theorem 2.3 (Case (ii)). Let α1 be a negative number such that G(a2) = G(α1). If

there exist K1 and K2 such that F (x) ≤ K1 (x > a2), F (x) ≥ K2 (x < α < 0), further

system (L) satisfies the conditions (C3) and

(C5) (0 <)K1 < M = min(F (α1), K2),

then the system has no limit cycles.

Theorem 2.4 (Case (iii)). Let α2 be a positive number such that G(a1) = G(α2). If

there exist K1 and K2 such that F (x) ≤ K1 (x > β > 0), F (x) ≥ K2 (x < a1), further

system (L) satisfies the conditions (C3) and

(C6) N = max(F (α2), K1) < K2 (< 0),

then the system has no limit cycles.

Proof of Theorem 2.3. For all u1 and u2 such that G(u1) = G(u2), α1 ≤ u1 < 0 and

0 < u2 ≤ a2, we have F (u1) > 0 and F (u2) < 0. Thus, we get F (u1) − F (u2) > 0.

On the other hand, for all u1 and u2 such that G(u1) = G(u2), u1 < α1 and a2 < u2, we

have from the condition (C5) that F (u1) − F (u2) > M −K1 > 0. These facts means

that the plane curve (F (x), G(x)) has no intersecting points with itself. Therefore, we

conclude from Lemma 2.1 that system (L) has no limit cycles.

The proof of Theorem 2.4 is given by the same discussion as Theorem 2.3.

Corollary 2.5. Under the conditions in Theorem 2.3 or Theorem 2.4 the equilibrium

point (0, 0) of system (L) is global unstability.
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Proof. Under the conditions in Theorem 2.3 or Theorem 2.4 system (L) has no limit

cycles. Further, from the condition (H2) system (L) has no homoclinic orbits (for in-

stance see [7]) and the equilibrium point (0, 0) is unstable. Thus, the origin is global

unstable.

Remark 2.6. In the case (iv), we see from [1] that system (L) has at least one limit cycles

under the conditions (C3) and (C4).

Next, we discuss the unique existence of limit cycles.

Theorem 2.7 (Case(ii)). Let α1 be a negative number such that G(a2) = G(α1) and

p = {x | max
x∈(−∞,0)

F (x)}. If system (L) satisfies the conditions (C3), (C4), (C7) α1 ≤ p

and besides

(C8) F (x) is monotone increasing for x < α1 and x > α2,

then the system has a unique limit cycle. Also it is stable and hyperbolic.

Theorem 2.8 (Case (iii)). Let α2 be a positive number such that G(a1) = G(α2) and

q = {x | min
x∈(0,+∞)

F (x)}. If system (L) satisfies the conditions (C3), (C4), (C9) q ≤ α2

and besides

(C10) F (x) is monotone increasing for x < a1 and x > α2,

then the system has a unique limit cycle. Also it is stable and hyperbolic.

Proof of Theorem 2.7. The existence of limit cycles of system (L) with the conditions

(H1) and (H2) are guaranteed by the conditions (C3) and (C4) (see [1]). From Lemma

2.1 or [5, Lemma 3.1] the limit cycles must intersect the lines x = α1 and x = a2. On

the other hand, from [8] or [6, appendix], if system (L) satisfies the conditions (C7) and

(C8), the limit cycle must be at most one. Thus, the proof is completed now by these

facts.

Similarily, Theorem 2.8 is proved.

The case (iv) has been studied in many papers. For instance see [2, 5, 6, 9].

3 Several Examples

We present two phase portraits of the concrete examples for system (L) as applications

of our results.

Example 3.1. Consider system (L) in the form

F (x) =

{

(x2 − x)e−x for x ≥ −1
5(x2 + x)ex+2 + 2e for x ≤ −1, g(x) = x.

(E1)
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Figure 3.1: Nonexistence of limit cycles for system (E1)

We can take from G(x) = x2/2 that a2 = 1, α1 = −1, K1 = 4.3/e2.6 < K2 = 2e and

F (−1) = 2e. Since K1 < M = 2e, the system satisfies all conditions of Theorem 2.3.

Thus, we see that system (E1) has no limit cycles as is shown in Figure 3.1.

Example 3.2. Consider system (L) in the form

F (x) =







3(x− 3)ex−6 for x ≥ 3
(x2 − 3x)e−x for − 1 ≤ x ≤ 3
9(x2 + x)ex+2 + 4e for x ≤ −1, g(x) = x.

(E2)

We can take from G(x) = x2/2 that a2 = 3, α1 = −3 < p = −3 −
√
5/2, K2 =

38.7/e0.6 + 4e < K1 = 38.7 + 4e. Also, we have F
′

(x) = 9(x2 + 3x+ 1)ex+2 > 0 for

x < −3, F
′

(x) = 3(x− 2)ex−6 > 0 for x > 3. Thus, we see that the system satisfies all

conditions of Theorem 2.7. Therefore, we also have that system (E2) has a unique limit

cycle, and it is stable and hyperbolic. See Figure 3.2.

4 Appendix

In this section, we shall consider the case of which the condition

(H3) g(x)F (x) > 0 for |x| < ǫ and ǫ is small

is satisfied instead of (H2). Then we see that the only equilibrium point (0, 0) is stable.

We apply the tool in [7] to this case. We assume that
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Figure 3.2: Unique existence of limit cycles for system (E2)

(C11) ∃a1 < 0 such that such that x(x− a1)F (x) > 0 for x 6= 0 and x 6= a1.

and the conditions in the Proposition 1.1.

Consider a function ϕ(x) with the condition

ϕ ∈ C1, ϕ(α) = 0 and ϕ
′

(x) > 0 for x > α ∈ (0, α2],

where α2 is a positive number satisfying the equation G(α2) = G(a1). We note from

the condition (H1) that α2 is unique.

Our result is the following.

Theorem 4.1. Assume the conditions (H1), (H3),(C3),(C4) and (C11). System (L) has

no limit cycles if there exists a function ϕ(x) such that

F (x) > ϕ(x) > 0 and g(x) ≤ ϕ
′

(x)[F (x)− ϕ(x)]

for all x ≥ α ∈ (0, α2].

Corollary 4.2. Under the conditions in Theorem 4.1 for system (L) the equilibrium

point (0, 0) of the system is globally asymptotic stable.
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