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Abstract

In this paper, we apply the fixed point method to establish the existence and
uniqueness of solutions of the β-initial value problem

Dβx(t) = g(t, x), x(s0) = x0, t ∈ I,

associated with the general quantum difference operator Dβ , which is defined by
Dβf(t) =

(
f(β(t)) − f(t)

)
/
(
β(t) − t

)
for every t with t 6= β(t), where β is

a strictly increasing continuous function defined on an interval I ⊆ R that has a
unique fixed point s0 ∈ I and satisfies the condition (t − s0)(β(t) − t) ≤ 0 for
every t ∈ I . Also, we use the successive approximations method to deduce an
expansion form for the β-exponential function.
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1 Introduction
Quantum calculus is receiving an increase of interest due to its applications. For in-
stance, in physics, economics and calculus of variations. It substitutes the classical
derivative by a difference operator, which allows one to deal with sets of nondifferen-
tiable functions; see, e.g., [1, 2, 5, 11–14]. In [8], we considered a strictly increasing
continuous function β : I → I defined on an interval I ⊆ R and has a unique fixed
point s0 ∈ I , to construct a general quantum difference operator Dβ , the β-difference
operator, defined by

Dβf(t) =


f(β(t))− f(t)

β(t)− t
, t 6= s0,

f ′(s0), t = s0,

where f is an arbitrary function defined on I and is differentiable at t = s0 in the
usual sense. The β-difference operator generalizes the well-known quantum difference
operators Hahn, q-Jackson and n, q-power difference operator, see [1, 3, 6, 7, 9, 15], and
all other such operators. Hence, the calculus associated with Dβ is a generalization of
the Hahn, q- and the n, q-power calculi and any such calculus, which avoid the repetition
of the results in each calculus separately. Also, the forward difference operator on
mixed time scale ∆a,b is a special case of Dβ when β(t) = at + b, a ≥ 1, b ≥ 0 and
a+ b > 1, [4].

In [8], we considered our function β when it has only one fixed point s0 ∈ I and
satisfies the following condition

(t− s0)(β(t)− t) ≤ 0 for all t ∈ I,

and gave a rigorous analysis of the calculus based on Dβ and its associated integral
operator. Some basic properties of such a calculus were stated and proved. For instance,
the chain rule, Leibniz’ formula, the mean value theorem and the fundamental theorem
of β-calculus. Also, in [10] the exponential, trigonometric and hyperbolic functions
based on Dβ were constructed. Finally, in [9] some basic integral inequalities based on
the β-difference operator were investigated, as Hölder’s, Minkowski’s, Gronwall’s and
Bernoulli’s inequalities.

In proceeding with the calculus based on Dβ , this paper is devoted to prove the exis-
tence and uniqueness theorems of the solutions of the first order β-initial value problem
using the fixed point method. In Section 2, some previous results in the calculus based
on Dβ , [8], which we need in this paper, are presented. In Section 3, local existence
and uniqueness theorems for the solutions of the first order β-initial value problem are
established. In Section 4, a global result is given. Also, an expansion form of the β-
exponential function is deduced by using the successive approximations method.

In the sequel, X is a Banach space with norm ‖ · ‖, I ⊆ R is an interval and s0 ∈ I
is the unique fixed point of β which belongs to I .
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2 Preliminaries
In this section, we present some needed results from [8] concerning the calculus associ-
ated with Dβ .

Definition 2.1. For a function f : I → X, we define the β-difference operator of f as

Dβf(t) =


f(β(t))− f(t)

β(t)− t
, t 6= s0,

f ′(s0), t = s0

provided that f ′ exists at s0. In this case, we say that Dβf(t) is the β-derivative of f at
t. We say that f is β-differentiable on I if f ′(s0) exists.

Theorem 2.2. Assume that f : I −→ X and g : I −→ R are β-differentiable functions
at t ∈ I . Then:
(i) The product fg : I −→ X is β-differentiable at t and

Dβ(fg)(t) = (Dβf(t))g(t) + f(β(t))Dβg(t)

= (Dβf(t))g(β(t)) + f(t)Dβg(t).

(ii) f/g is β-differentiable at t and

Dβ

(
f/g

)
(t) =

(Dβf(t))g(t)− f(t)Dβg(t)

g(t)g(β(t))
, g(t)g(β(t)) 6= 0.

Lemma 2.3. The following statements are true.

(i) The sequence of functions {βk}k∈N0 converges uniformly to the constant function
β̂ := s0 on every compact interval J ⊆ I containing s0.

(ii) The series
∑∞

k=0
|βk(t) − βk+1(t)| is uniformly convergent to |t − s0| on every

compact interval J ⊆ I containing s0.

Lemma 2.4. Let f : I → X be β-differentiable and Dβf(t) = 0 for all t ∈ I , then
f(t) = f(s0) for all t ∈ I .

Theorem 2.5. Assume f : I → X is continuous at s0. Then the function F defined by

F (t) =
∞∑
k=0

(
βk(t)− βk+1(t)

)
f(βk(t)), t ∈ I (2.1)

is a β-antiderivative of f with F (s0) = 0. Conversely, a β-antiderivative F of f van-
ishing at s0 is given by (2.1).
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Definition 2.6. Let f : I → X and a, b ∈ I . We define the β-integral of f from a to b
by ∫ b

a

f(t)dβt =

∫ b

s0

f(t)dβt−
∫ a

s0

f(t)dβt, (2.2)

where ∫ x

s0

f(t)dβt =
∞∑
k=0

(
βk(x)− βk+1(x)

)
f(βk(x)), x ∈ I (2.3)

provided that the series converges at x = a and x = b. f is called β-integrable on I if
the series converges at a, b for all a, b ∈ I . Clearly, if f is continuous at s0 ∈ I , then f
is β-integrable on I .

Theorem 2.7. Let f : I → X be continuous at s0. Define the function

F (x) =

∫ x

s0

f(t)dβt, x ∈ I. (2.4)

Then F is continuous at s0, DβF (x) exists for all x ∈ I and DβF (x) = f(x).

Theorem 2.8. If f : I −→ X is β-differentiable on I , then∫ b

a

Dβf(t)dβ(t) = f(b)− f(a), for all a, b ∈ I. (2.5)

Definition 2.9. Let s0 ∈ [a, b] ⊆ I . We define the β-interval by

[a, b]β = {βk(a); k ∈ N0} ∪ {βk(b); k ∈ N0} ∪ {s0}.

For any point c ∈ I , we denote by

[c]β = {βk(c); k ∈ N0} ∪ {s0}.

Lemma 2.10. Let f : I → X, g : I → R be β-integrable functions on I . If

‖f(t)‖ ≤ g(t) for all t ∈ [a, b]β, a, b ∈ I, a ≤ b,

then for x, y ∈ [a, b]β, x < s0 < y, we have∥∥∥∫ y

s0

f(t)dβt
∥∥∥ ≤ ∫ y

s0

g(t)dβt, (2.6)

∥∥∥∫ x

s0

f(t)dβt
∥∥∥ ≤ ∫ s0

x

g(t)dβt (2.7)

and ∥∥∥∫ y

x

f(t)dβt
∥∥∥ ≤ ∫ y

x

g(t)dβt. (2.8)

Consequently, if g(t) ≥ 0 for all t ∈ [a, b]β , then the inequalities
∫ y

s0

g(t)dβt ≥ 0 and∫ y

x

g(t)dβt ≥ 0 hold for all x, y ∈ [a, b]β, x < s0 < y, a, b ∈ I, a ≤ b.
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The following definition and theorem are results from [10].

Definition 2.11 (β-Exponential Function). Assume that p : I → C is a continuous
function at s0. We define the β-exponential function ep,β(t) by

ep,β(t) =
1∏∞

k=0

[
1− p(βk(t))(βk(t)− βk+1(t))

] . (2.9)

Theorem 2.12. The β-exponential function ep,β(t) is the unique solution of the first
order β-difference equation

Dβy(t) = p(t)y(t), y(s0) = 1. (2.10)

Proof. It is obvious that ep,β(s0) = 1. We have

Dβep,β(t) =
ep,β(β(t))− ep,β(t)

β(t)− t

=
1

β(t)− t

[ 1∏∞
k=0(1− p(βk+1(t))(βk+1(t)− βk+2(t)))

− 1∏∞
k=0(1− p(βk(t))(βk(t)− βk+1(t)))

]
=

p(t)∏∞
k=o(1− p(βk(t))(βk(t)− βk+1(t)))

= p(t)ep,β(t).

To prove the uniqueness of the solution ep,β(t), let x be another solution of Equation
(2.10). We have

Dβ

( x(t)

ep,β(t)

)
=
ep,β(t)Dβx(t)− x(t)Dβep,β(t)

ep,β(t)ep,β(β(t))
= 0, t ∈ I.

By Lemma 2.4,
x(t)

ep,β(t)
is a constant function and

x(t)

ep,β(t)
=

x(s0)

ep,β(s0)
= 1, i.e., x(t) =

ep,β(t) for all t ∈ I .

3 Local Existence and Uniqueness
In this section, we use the fixed point method to show the existence and uniqueness of
the solutions of the β-initial value problem (β-IVP)

Dβx(t) = f(t, x), x(s0) = x0, t ∈ I. (3.1)

Theorem 3.1. Let f : U ⊂ R× X → X be a continuous function at (s0, x0), and φ be
a function defined on an interval I ⊆ R such that s0 ∈ I . Then φ is a solution of the
β-IVP (3.1) if, and only if,
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(1) For all t ∈ I , (t, φ(t)) ∈ U.

(2) φ is continuous at s0.

(3) For all t ∈ I , φ(t) = x0 +

∫ t

s0

f(τ, φ(τ))dβτ .

Proof. Let φ be a solution of the β-IVP (3.1). Then

Dβφ(t) = f(t, φ(t)), for all t ∈ I, (3.2)

which implies (t, φ(t)) ∈ U for all t ∈ I . Also, since φ is β-differentiable on I , then it
is continuous at s0. Finally, integrating both sides of (3.2) from s0 to t, we get

φ(t)− φ(s0) =

∫ t

s0

f(τ, φ(τ))dβτ.

Then,

φ(t) = x0 +

∫ t

s0

f(τ, φ(τ))dβτ.

Conversely, assume the items (1), (2) and (3) are satisfied, then φ is ordinary differ-
entiable at s0. Consequently, it is β-differentiable on I with Dβφ(t) = f(t, φ(t)) and
φ(s0) = x0. Therefore, φ is a solution of the β-IVP (3.1).

Throughout this paper, R ⊂ U is defined by

R = {(t, x) ∈ I × X : |t− s0| ≤ a, ‖x− x0‖ ≤ b},

where a, b > 0. Let M = sup
(t,x)∈R

‖f(t, x)‖ < ∞. In the following theorem, we use the

fixed point method to prove the existence and uniqueness of the solution of the β-IVP
(3.1).

Theorem 3.2. Assume that the function f : R → X is continuous at (s0, x0) ∈ R and
satisfies the Lipschitz condition (with respect to x)

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖, for all (t, x1), (t, x2) ∈ R. (3.3)

Then the β-IVP has a unique solution on [s0 − δ, s0 + δ], where L is a positive constant

and δ = min
{
a,

b

Lb+M
,
ρ

L

}
with ρ ∈ (0, 1).

Proof. We prove the theorem for t ∈ [s0, s0 + δ] and the proof for t ∈ [s0 − δ, s0] is
similar. Define the operator T by

Tx(t) = x0 +

∫ t

s0

f(τ, x(τ))dβτ. (3.4)
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Let C[s0,s0+δ] be the space of all continuous functions at s0 and bounded on the in-
terval [s0, s0 + δ] with the supremum norm such that for x ∈ C[s0,s0+δ], ‖x‖∞ =

sup
t∈[s0,s0+δ]

‖x(t)‖. This space is complete. Let S = {x ∈ C[s0,s0+δ] : ‖x − x0‖∞ ≤ b}.

S ⊂ C[s0,s0+δ] and is closed, then S is a complete metric space. First, we prove that
T : S → S. Let φ ∈ S,

‖Tφ(t)− x0‖ =
∥∥∥∫ t

s0

f(τ, φ(τ))dβτ
∥∥∥

=
∥∥∥∫ t

s0

(
f(τ, φ(τ))− f(τ, x0) + f(τ, x0)

)
dβτ
∥∥∥

≤
∫ t

s0

∥∥∥f(τ, φ(τ))− f(τ, x0) + f(τ, x0)
∥∥∥dβτ

≤
∫ t

s0

∥∥∥f(τ, φ(τ))− f(τ, x0)
∥∥∥+

∥∥∥f(τ, x0)
∥∥∥ dβτ

≤
∫ t

s0

(
L‖φ(τ)− x0‖+M

)
dβτ

≤ (Lb+M)

∫ t

s0

dβτ

≤ (Lb+M)(t− s0)
≤ (Lb+M)δ.

In view of δ ≤ b

Lb+M
, we have ‖Tφ(t) − x0‖ ≤ b, i.e., Tφ ∈ S. Second, we show

that T is a contraction mapping. Let φ1, φ2 ∈ S,

‖Tφ1(t)− Tφ2(t)‖ =
∥∥∥∫ t

s0

(
f(τ, φ1(τ))− f(τ, φ2(τ))

)
dβτ
∥∥∥

≤
∫ t

s0

∥∥∥f(τ, φ1(τ))− f(τ, φ2(τ))
∥∥∥dβτ

≤
∫ t

s0

L
∥∥∥φ1(τ)− φ2(τ)

∥∥∥ dβτ
≤ L‖φ1 − φ2‖∞

∫ t

s0

dβτ

= L‖φ1 − φ2‖∞(t− s0)
≤ Lδ‖φ1 − φ2‖∞
≤ ρ‖φ1 − φ2‖∞.

Then T is a contraction mapping. By Banach’s fixed point theorem, T has a unique
fixed point in S and then the β-IVP (3.1) has a unique solution in S.
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4 Global Existence and Uniqueness
In this section, we use the fixed point method to show that, if the function f satisfies the
Lipschitz condition on D = [s0, s0 + a]× X rather than on R, then the β-IVP (3.1) has
a unique solution on the entire interval [s0, s0 + a].

Theorem 4.1. Let f be continuous at (s0, x0) and satisfies the Lipschitz condition

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖ for all (t, x1), (t, x2) ∈ D,

with L <
1

a
, then the β-IVP (3.1) has a unique solution on the entire interval [s0, s0+a].

Proof. Let the operator T be as defined in (3.4), t ∈ [s0, s0 +a] and suppose C[s0,s0+a] is
the complete metric space of all continuous functions at s0 and bounded on the interval
[s0, s0 + a] with the supremum norm. Let φ(t) ∈ C[s0,s0+a]. Then it is clear that Tφ(t) ∈
C[s0,s0+a]. To show that T is contraction, assume that φ1, φ2 ∈ C[s0,s0+a]. Then

||Tφ1(t)− Tφ2(t)|| =
∥∥∥∫ t

s0

(
f(τ, φ1(τ))− f(τ, φ2(τ))

)
dβτ
∥∥∥

≤
∫ t

s0

∥∥∥f(τ, φ1(τ))− f(τ, φ2(τ))
∥∥∥dβτ

≤
∫ t

s0

L
∥∥∥φ1(τ)− φ2(τ)

∥∥∥ dβτ
= L||φ1 − φ2||∞

∫ t

s0

dβτ

= L||φ1 − φ2||∞(t− s0)
≤ La||φ1 − φ2||∞.

where La < 1. Then , T has a unique fixed point in C[s0,s0+a] and then the β-IVP (3.1)
has a unique solution in C[s0,s0+a].

One can see that the successive approximation method, [7,16], can be used to prove
the existence and uniqueness of the solution of the β-IVP (3.1).

Theorem 4.2. Assume that f : R → X is continuous at (s0, x0) and satisfies the Lips-
chitz condition

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖, for all (t, x1), (t, x2) ∈ R

where L is a positive constant. Then the sequence defined by

φk+1(t) = x0 +

∫ t

s0

f(τ, φk(τ))dβτ, φ0(t) = x0, |t− s0| ≤ δ, k ≥ 0 (4.1)

converges uniformly on the interval |t− s0| ≤ δ to, a function φ, the unique solution of

the β-IVP (3.1), where δ = min
{
a,

b

Lb+M
,
ρ

L

}
with ρ ∈ (0, 1).
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The following theorem shows that if the function f satisfies the Lipschitz condition
on D = [s0 − a, s0 + a]×X rather than on R, then the solutions will exist on the entire
interval [s0 − a, s0 + a].

Theorem 4.3. Let f be continuous at (s0, x0) and satisfies the Lipschitz condition

‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖ for all (t, x1), (t, x2) ∈ D,

where L <
1

a
, then the successive approximations φk that are given in (4.1) converge

uniformly on [s0 − a, s0 + a] to the unique solution of the β-IVP (3.1).

In the following, we deduce an expansion form of the β-exponential function (2.9)
using the method of successive approximations.

Theorem 4.4. Let z ∈ C be a constant. Then the function φ defined by

φ(t) =
∞∑
k=0

zkαk(t), (4.2)

is the unique solution of the β-IVP

Dβx(t) = zx(t), x(s0) = 1, (4.3)

where

αk(t) =


∞∑

i1,i2,i3,...,ik−1=0

( k−1∏
l=1

(β, β)∑l
j=1 ij

)(
β
∑k−1
j=1 ij(t)− s0

)
, if k ≥ 2,

t− s0, if k = 1,
1, if k = 0,

with (β, β)i = βi(t)− βi+1(t).

Proof. We prove by the method of successive approximations. Choose φ0(t) = 1 as the
initial solution. Then using relation (4.1) to get

φ1(t) =1 +

∫ t

s0

f(τ, φ0(τ))dβτ

= 1 +

∫ t

s0

zφ0(τ)dβτ

= 1 + z(t− s0).
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Again by relation (4.1), the function φ2 is given by

φ2(t) =1 +

∫ t

s0

f(τ, φ1(τ))dβτ

= 1 +

∫ t

s0

zφ1(τ)dβτ

= 1 +

∫ t

s0

(
z + z2(τ − s0)

)
dβτ

= 1 + z(t− s0) + z2
∞∑
i1=0

(
βi1(t)− βi1+1(t)

)(
βi1(t)− s0

)
= 1 + z(t− s0) + z2

∞∑
i1=0

(
β, β

)
i1

(
βi1(t)− s0

)
.

Also, φ3(t) is given by

φ3(t) = 1 +

∫ t

s0

f(τ, φ2(τ))dβτ

= 1 +

∫ t

s0

zφ2(τ)dβτ

= 1 + z(t− s0) + z2
∞∑
i1=0

(
β, β

)
i1

(
βi1(t)− s0

)
+ z3

∞∑
i2=0

(
β, β

)
i2

∞∑
i1=0

(
β, β

)
i1+i2

(
βi1+i2(t)− s0

)
= 1 + z(t− s0) + z2

∞∑
i1=0

(
β, β

)
i1

(
βi1(t)− s0

)
+ z3

∞∑
i2,i1=0

(
β, β

)
i2

(
β, β

)
i1+i2

(
βi1+i2(t)− s0

)
.

By induction on n, we can show that

φn(t) = 1 + z(t− s0) +
n∑
k=2

zk
∞∑

i1,i2,i3,...,ik−1=0

( k−1∏
l=1

(β, β)∑l
j=1 ij

)(
β
∑k−1
j=1 ij(t)− s0

)
.

So, by Theorem 4.3 φn → φ =
∞∑
k=0

zkαk(t).
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Example 4.5. Let β(t) = qt, q ∈ (0, 1). Then s0 = 0 and βi(t) = qit, i = 0, 1, 2, · · · .
In this case (β, β)i = qit(1− q). Therefore,

αk(t) =


∞∑

i1,i2,i3,...,ik−1=0

( k−1∏
l=1

t(1− q)q
∑l
j=1 ij

)(
tq

∑k−1
j=1 ij

)
, if k ≥ 2,

t− s0, if k = 1,
1, if k = 0.

We show by induction that

αk(t) =
(t(1− q))k

(q; q)k
, k = 0, 1, 2, · · · , (4.4)

where

(q; q)k =


k∏

m=1

(1− qm), if k ∈ N,

1, if k = 0.

For k = 0, α0(t) = 1. For k = 1, α1(t) =
t(1− q)

1− q
= t. For k = 2, α2(t) =

t2(1 − q)
∞∑
i1=0

q2i1 =
t2(1− q)

1− q2
. Suppose that (4.4) is true for k = m ≥ 2. Then for

k = m+ 1, we have

αm+1(t) =
∞∑

i1,i2,i3,...,im=0

( m∏
l=1

t(1− q)q
∑l
j=1 ij

)(
tq

∑m
j=1 ij

)
= tm+1(1− q)m

∞∑
i1=0

q(m+1)i1

∞∑
i2=0

qmi2 · · ·
∞∑

im=0

q2im

=
tm+1(1− q)m

(1− q2)(1− q3) · · · (1− qm)(1− qm+1)

=
(t(1− q))m+1

(q, q)m+1

.

Consequently,

φ(t) =
∞∑
k=0

(zt(1− q))k

(q; q)k
,

which is the expansion of q-exponential function, the unique solution of (4.3). See
[1, 11].
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Example 4.6. Let β(t) = qt + ω, q ∈ (0, 1), ω > 0. Then s0 =
ω

1− q
and βi(t) =

qit + ω
1− qi

1− q
. So, (β, β)i = qi

(
t(1 − q) − ω

)
and (βi(t) − s0) =

qi(t(1− q)− ω)

1− q
.

Therefore,

αk(t) =



∞∑
i1,i2,i3,...,ik−1=0

( k−1∏
l=1

(t(1− q)− ω)q
∑l
j=1 ij

)((t(1− q)− ω)

1− q
q
∑k−1
j=1 ij

)
,

if k ≥ 2,
t− s0, if k = 1,
1, if k = 0.

We prove by induction that

αk(t) =
(t(1− q)− ω)k

(q; q)k
, k = 0, 1, 2, · · · . (4.5)

For k = 0, α0(t) = 1. For k = 1, α1(t) =
t(1− q)− ω

1− q
= t − s0. For k = 2,

α2(t) =
(t(1− q)− ω)2

(1− q)(1− q2)
. Suppose that (4.5) is true for k = m. Then for k = m + 1,

we have

αm+1(t) =
∞∑

i1,i2,··· ,im=0

(
qi1
(
t(1− q)− ω

))(
qi1+i2

(
t(1− q)− ω

))
· · ·

(
qi1+i2+···+im

(
t(1− q)− ω

))(qi1+i2+···+im(t(1− q)− ω)

1− q

)
=

(t(1− q)− ω)m+1

1− q

∞∑
i1=0

q(m+1)i1

∞∑
i2=0

qmi2 · · ·
∞∑

im=0

q2im

=
(t(1− q)− ω)m+1

(1− q)(1− q2) · · · (1− qm)(1− qm+1)

=
(t(1− q)− ω)m+1

(q, q)m+1

.

Hence,

φ(t) =
∞∑
k=0

(z(t(1− q)− ω))k

(q; q)k
,

which is the Hahn-exponential function, the unique solution of (4.3). See [1].

We combine Theorem 2.12 and Theorem 4.4 to obtain the following result.
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Proposition 4.7. Let z ∈ C. The β-exponential function ez,β(t) has the expansion

ez,β(t) =
∞∑
k=0

zkαk(t), (4.6)

αk(t) =


∞∑

i1,i2,i3,...,ik−1=0

( k−1∏
l=1

(β, β)∑l
j=1 ij

)(
β
∑k−1
j=1 ij(t)− s0

)
, if k ≥ 2,

t− s0, if k = 1,
1, if k = 0.

5 Conclusion
This paper was devoted to use the fixed point method for proving the existence and
uniqueness of solutions of the β-initial value problem associated with the β-difference
operator which is defined by Dβf(t) =

(
f(β(t)) − f(t)

)
/
(
β(t) − t

)
, for every t with

t 6= β(t) where f is an arbitrary function defined on I ⊂ R and β is a strictly increasing
continuous function defined on I and satisfies the condition (t − s0)(β(t) − t) ≤ 0 for
every t ∈ I . Also, an expansion form of the β-exponential function was deduced by the
successive approximations method.
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