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Abstract

In this paper, we apply the fixed point method to establish the existence and
uniqueness of solutions of the S-initial value problem

Dﬁ{l?(t):g(t,l‘), ':U(SO) = X0, tEI,

associated with the general quantum difference operator Dg, which is defined by
Dgf(t) = (f(B(t) — f(t))/(B(t) — t) for every t with t # B(t), where j is
a strictly increasing continuous function defined on an interval / C R that has a
unique fixed point sg € I and satisfies the condition (t — so)(8(t) — t) < 0 for
every t € I. Also, we use the successive approximations method to deduce an
expansion form for the 5-exponential function.
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1 Introduction

Quantum calculus is receiving an increase of interest due to its applications. For in-
stance, in physics, economics and calculus of variations. It substitutes the classical
derivative by a difference operator, which allows one to deal with sets of nondifferen-
tiable functions; see, e.g., [1,2,5,11-14]. In [8], we considered a strictly increasing
continuous function 8 : I — [ defined on an interval / C R and has a unique fixed
point s, € I, to construct a general quantum difference operator Dg, the -difference
operator, defined by

f(B(t)) — f(t) ;
, t# 30,
Dofty =4 POt
1'(s0), L = so,

where f is an arbitrary function defined on / and is differentiable at ¢ = s; in the
usual sense. The [-difference operator generalizes the well-known quantum difference
operators Hahn, ¢g-Jackson and n, g-power difference operator, see [1,3,6,7,9,15], and
all other such operators. Hence, the calculus associated with Dg is a generalization of
the Hahn, ¢- and the n, g-power calculi and any such calculus, which avoid the repetition
of the results in each calculus separately. Also, the forward difference operator on
mixed time scale A, is a special case of Dz when B(t) =at+b,a>1,b>0and
a+b>1,[4].

In [8], we considered our function S when it has only one fixed point sq € I and
satisfies the following condition

(t—s0)(B(t) —t) <0 forallt € I,

and gave a rigorous analysis of the calculus based on Dy and its associated integral
operator. Some basic properties of such a calculus were stated and proved. For instance,
the chain rule, Leibniz’ formula, the mean value theorem and the fundamental theorem
of (-calculus. Also, in [10] the exponential, trigonometric and hyperbolic functions
based on Dg were constructed. Finally, in [9] some basic integral inequalities based on
the (-difference operator were investigated, as Holder’s, Minkowski’s, Gronwall’s and
Bernoulli’s inequalities.

In proceeding with the calculus based on Djg, this paper is devoted to prove the exis-
tence and uniqueness theorems of the solutions of the first order S-initial value problem
using the fixed point method. In Section 2, some previous results in the calculus based
on Dg, [8], which we need in this paper, are presented. In Section 3, local existence
and uniqueness theorems for the solutions of the first order S-initial value problem are
established. In Section 4, a global result is given. Also, an expansion form of the -
exponential function is deduced by using the successive approximations method.

In the sequel, X is a Banach space with norm || - ||, I C R is an interval and sy € T
is the unique fixed point of 5 which belongs to I.
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2 Preliminaries

In this section, we present some needed results from [8] concerning the calculus associ-
ated with Dg.

Definition 2.1. For a function f : I — X, we define the S-difference operator of f as

FB0) 1)
, t# S0,
Dsf(t) = pl) —t
f'(s0), L= 350

provided that f’ exists at so. In this case, we say that D f(t) is the -derivative of f at
t. We say that f is S-differentiable on I if f'(sq) exists.

Theorem 2.2. Assume that f : I — X and g : I — R are (-differentiable functions
att € I. Then:
(i) The product fg : I — X is B-differentiable at t and

Ds(fg)(t) = (Dsf(8))g(t) + f(B(t))Dsy(t)
= (Daf()g(B(1)) + f(t) Dpg(t).

(ii) f/g is B-differentiable at t and

(Dpf(1)g(t) — () Dsg(t)
9(t)g(6(t)) ’

Lemma 2.3. The following statements are true.

Ds(f/9)(t) =

9(t)g(B(t)) # 0.

(i) The sequence of functions { Bk} keN, converges uniformly to the constant function
B = sqg on every compact interval J C I containing s.

.. . 0 k k41 . .
(ii) The series ZHW (t) — B*T1(t)| is uniformly convergent to |t — sq| on every
compact interval J C I containing s.

Lemma 2.4. Let f : I — X be p-differentiable and Dgf(t) = 0 for all t € I, then
f(t) = f(so) forallt € I.

Theorem 2.5. Assume f : [ — X is continuous at sg. Then the function F defined by

o

F(t) =3 (85 - 81(0)) F(B" ), te T .1

k=0

is a (-antiderivative of f with F(sq) = 0. Conversely, a [3-antiderivative F of [ van-
ishing at sq is given by (2.1).
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Definition 2.6. Let f : [ — X and a,b € I. We define the [-integral of f from a to b

by
[ st = [ sz [ o 22)
where i .
| 10dt =3 (8@) - 81 @) 184 (a)), wel 23)
S0 k=0

provided that the series converges at = a and x = b. f is called S-integrable on [ if
the series converges at a, b for all a,b € I. Clearly, if f is continuous at sy € I, then f
is S-integrable on /.

Theorem 2.7. Let f : I — X be continuous at sy. Define the function
Fla) = / f(B)dst, zel. 2.4)
S0

Then F is continuous at s, DgF' () exists for all x € I and DgF(x) = f(x).
Theorem 2.8. If f : [ — X is B-differentiable on I, then

/ D f(t)ds(t) = F(b) — f(a), forallabel 2.5)
Definition 2.9. Let s € [a,b] C I. We define the S-interval by
a,b] 5 = {B"(a);k € No} U{B*(); k € No} U {s0}.
For any point ¢ € I, we denote by
[cls = {B"(c); k € No} U {s0}.
Lemma 2.10. Let f : [ — X, g : I — R be [-integrable functions on I. If
Nf@) <g(t) forall te€la,blg, a,bel,a<b,

then for x,y € [a,blg, = < sy <y, we have

Y Y

f(t)d/jt S/ g(t)dgt, (26)

f(t)dgt S/ g(t)dgt (27)
and

Y Y

F(t)dst|| < / g(t)dst. (2.8)

Yy
Consequently, if g(t) > 0 for all t € [a,b]p, then the inequalities/ g(t)dsgt > 0 and

S0

y
/ g(t)dgt > 0 hold for all x,y € [a,blg,x < so <y, a,be I,a <h
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The following definition and theorem are results from [10].

Definition 2.11 (5-Exponential Function). Assume that p : [ — C is a continuous
function at s,. We define the 3-exponential function e,, . (t) by

1
[T [1 = p(BE ) (B5(t) — B1(8))]

Theorem 2.12. The (-exponential function e, ,(t) is the unique solution of the first
order [(-difference equation

Dgy(t) = p(t)y(t),  y(so) = 1. (2.10)

Proof. Itis obvious that e, ,(so) = 1. We have
)

epaﬂ( (t) ep/a()
p(t) —
1 [ 1
Bt) = t LLZo (1 — p(B¥1(2)) (851 (E) — BE2(1)))
1

T (1= p(BR(1))(B5(t) — BFHL(t)))

_ p(t) o
=0 s ) (570 — gy Pt

To prove the uniqueness of the solution e, ,(t), let 2 be another solution of Equation
(2.10). We have

eps(t) = (2.9)

Dﬁenﬁ (t) =

DB( x(t) ) _ ep,s (1) Dpx(t) — x(t) Dge, . (t) _o tel
€p.s (t) €p,s (t)6p7ﬁ (B(1)) ’
t t
By Lemma 2.4, z(t) is a constant function and z(t) = z(50) = 1l,ie, z(t) =
€p, (1) eps(t)  eps(s0)
ep,(t) forallt € I. O

3 Local Existence and Uniqueness

In this section, we use the fixed point method to show the existence and uniqueness of
the solutions of the [3-initial value problem (5-1VP)

Dgx(t) = f(t,z), x(so) =m0, t €I 3.1

Theorem 3.1. Let f : U C R x X — X be a continuous function at (sg, zo), and ¢ be
a function defined on an interval I C R such that sy € 1. Then ¢ is a solution of the
B-1VP (3.1) if, and only if,



50 A. E. Hamza and E. M. Shehata

(1) Forallt € I, (t,¢(t)) € U.

(2) ¢ is continuous at .

t

(3) Forallt € I, ¢(t) = xg —I—/ f(r,¢(7))dgT.
S0

Proof. Let ¢ be a solution of the 5-IVP (3.1). Then

Dsd(t) = f(t,6(t)), forallte I, 3.2)

which implies (¢, ¢(t)) € Uforall t € I. Also, since ¢ is -differentiable on I, then it
is continuous at sy. Finally, integrating both sides of (3.2) from s to ¢, we get

B(t) — b(so) = / £(r, 6(r)dar.

Then, .
o(t) = w0 + / £(r, 6(r))dsr.

Conversely, assume the items (1), (2) and (3) are satisfied, then ¢ is ordinary differ-
entiable at so. Consequently, it is S-differentiable on I with Dg¢(t) = f(t, ¢(t)) and
¢(s9) = xo. Therefore, ¢ is a solution of the 5-IVP (3.1). ]

Throughout this paper, R C U is defined by
R=A{(t,z) e I x X : |t — so| < a, ||z — 0| < b},

where a,b > 0. Let M = sup ||f(t,x)| < oo. In the following theorem, we use the
(t,x)ER
fixed point method to prove the existence and uniqueness of the solution of the 3-IVP

(3.1).

Theorem 3.2. Assume that the function f : R — X is continuous at (sy,zo) € R and
satisfies the Lipschitz condition (with respect to x)

| f(t, 1) — f(t, 22)|| < Lljzy — 22|, forall (t,z1),(t,x2) € R. (3.3)

Then the B-IVP has a unique solution on [sy — 0, so + 0], where L is a positive constant

b
and 0 = min {a, Lb+M’%} with p € (0, 1).

Proof. We prove the theorem for ¢t € [sg, so + d] and the proof for ¢ € [sy — 0, s¢] is
similar. Define the operator 1" by

Tu(t) =z + / F(r,x(m))ds. (3.4)
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Let Cls,50+5) be the space of all continuous functions at sy and bounded on the in-
terval [sg, sp + 0] with the supremum norm such that for x € Cig 5010 [|2]]oc =

sup  ||z(t)||. This space is complete. Let S = {& € Cls;50+4] © || — @0|le < b}
t6[50,80+5]
S C Clsy,s9+6) and is closed, then S is a complete metric space. First, we prove that
T:5—S. Letgp €S,

IT6(t) - oll =| /S:f(7,¢(7))de

/%}m¢v»—fvww+fvwwywﬂ

S0
t
S /
S0
t
S /
S0

< [ (2l6) ~ aull + M) asr

S0

F(7.6(7) = F(r,30) + £, 20) [

f(r, (7)) = f(7, 20)

+ Hf(T,a:O)

dﬁT

< (Lb—i—M)/tdlgT
< (Lb+ M)(t - S0)
< (Lb+ M)d.

b
In view of § < oo e have ||T'¢(t) — xo|| < b, i.e., T$ € S. Second, we show

that 7" is a contraction mapping. Let ¢1, ¢2 € S,

ITé1(t) — Ta(t) :H /: (f(T, oi(7)) = f(T, @(T)))OWH

< [ rmonrn) = stz oatrp s

<x

t
SM@—@M/dN

S0

= L||¢1 — ¢2]loo(t — s0)
< Lo||¢1 — 92l
< plldr — d2loo-

Then 7' is a contraction mapping. By Banach’s fixed point theorem, 7" has a unique
fixed point in .S and then the 5-IVP (3.1) has a unique solution in S. l

61(7) = 6a(7)| dsr
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4 Global Existence and Uniqueness

In this section, we use the fixed point method to show that, if the function f satisfies the
Lipschitz condition on D = [sg, 59 + a] x X rather than on R, then the 5-IVP (3.1) has
a unique solution on the entire interval [sg, so + a].

Theorem 4.1. Let | be continuous at (so, o) and satisfies the Lipschitz condition
1f(t, 21) = f(E, 22)|| < Lllwy — 2af| forall (¢,21), (t,22) € D,
1
with L < —, then the 3-1VP (3.1) has a unique solution on the entire interval [sy, so+al.
a

Proof. Let the operator T be as defined in (3.4), t € [sg, So + a] and suppose Clso,s0+a] 18
the complete metric space of all continuous functions at s, and bounded on the interval
50, S0 + a] with the supremum norm. Let ¢(t) € Cly; so+q)- Then itis clear that T'¢(t) €
Clso,s0+a)- To show that T' is contraction, assume that ¢, ¢2 € Cls, s9+q]- Then

|wm@—fm@m=W£(ﬂﬂ@v»—ﬂﬂ@“”WNH

</
50

< [ t]onte) - o2t dor

F(r.6n(r) = £(7, 62(7))|[ds7

:w@—mu/dw

S0

= L|[¢1 — ¢2|oo(t — 50)
< Lal|p1 — ¢2]]co-

where La < 1. Then , T" has a unique fixed point in Cl, 4,1, and then the 5-IVP (3.1)
has a unique solution in Clg, s+ q]- []

One can see that the successive approximation method, [7, 16], can be used to prove
the existence and uniqueness of the solution of the S-IVP (3.1).

Theorem 4.2. Assume that f : R — X is continuous at (s, xo) and satisfies the Lips-
chitz condition

| f(t,x1) — f(t, 22)|| < L||xy — 22|, forall (t,z1),(t,x2) € R

where L is a positive constant. Then the sequence defined by
t
Pr41(t) = o +/ [T ou(7))dpT,  do(t) =20, [t —s0| <9, k>0 4.1)
S0
converges uniformly on the interval |t — so| < 0 to, a function ¢, the unique solution of

b
the B-IVP (3.1), where 6 = min {a, TSR %} with p € (0, 1).
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The following theorem shows that if the function f satisfies the Lipschitz condition
on D = [sg — a, So + a] x X rather than on R, then the solutions will exist on the entire
interval [sg — a, so + al.

Theorem 4.3. Let f be continuous at (s, xo) and satisfies the Lipschitz condition

1F (1) = J(t wo)l| < Loy — ol for all (¢, 24), (¢, x2) € D,

1 : o Lo
where L < —, then the successive approximations ¢y, that are given in (4.1) converge

a
uniformly on [sg — a, So + a] to the unique solution of the B-IVP (3.1).

In the following, we deduce an expansion form of the S-exponential function (2.9)
using the method of successive approximations.

Theorem 4.4. Let 2 € C be a constant. Then the function ¢ defined by

o) =Y Fay(t), (4.2)
k=0
is the unique solution of the 3-1VP
Dy (t) = zx(t), x(so) =1, (4.3)
where
0 k—1 X
> (TI6®s,,) (50 =s). if k=2
() = < rvinsizino1=0  I=1
t — S, if k=1,
L if k=0,

with (8, B); = B'(t) — B (1).

Proof. We prove by the method of successive approximations. Choose ¢y(¢) = 1 as the
initial solution. Then using relation (4.1) to get

o (t) =1 +/ f(7, ¢0(7))dsT

=1 +/ Z¢0(T>d@7

S0

=14 z(t — s0).
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Again by relation (4.1), the function ¢, is given by

b(t) =1 + / £(r, é1(r))dgr

_q +/t 261(7)dsT

—1+ /t <z+22(7 - so)>d57

— (- )+ fj (50 - 510 (5 () - )
=t 22 (39), (70 )

Also, ¢3(t) is given by

ba(t) = 1+ / £, (7)) dgr

=1+ / 2¢(T)dgT
=1+ 2(t — 50) + f}o (8.8), (86~ 50)
23 (1), 32 (1), (70 )
— 14 2(t—s) + fj (5.8), (56~ s)
y z (8.8), (8.8)._ (3%20) ~ s0).
Oult) = 1+ 2(t = 50) + Z s fj (lﬁj(/a, Blsi_s,) (BE () = s0).
So, by Theorem 4.3 ¢,, — ¢ = i Fag(t). O

k=0
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Example 4.5. Let 3(t) = qt, ¢ € (0,1). Then sy = 0 and 5'(t) = ¢'t,i = 0,1,2,---.
In this case (3, 8); = ¢'t(1 — q). Therefore,

o0 k—1
> (I aes) (=), it k=
Oék(t) — 11,82,13,..,0k—1=0 [=1 X
t — S0, lf k‘ - ].,
1, if £=0.

We show by induction that

t(1—q))*
Oék(t) = ((—(]))7 k= 07 1727 Tty (44)
(¢ D)
where
k
(1—-4q™), if keN,
() = ;[1 -
1, if k=0.
t(1 —
For k = 0, ap(t) = 1. For k = 1, ay(t) = (1 ) =t Fork = 2, ay(t) =
—q
(1—
(1 —¢q Zqz” = —q) Suppose that (4.4) is true for kK = m > 2. Then for
- ¢

11=0
k=m+ 1, we have

oo

ama(t) = ) (f[ 11— q)g=m ) (1= )

11,02,13,--.,im =0

="t (1 Z gt Z g Z g>m
11=0 i19=0 im=0
_ "1 —g"
-0 =) (1= g1 - gt
_ (1 —q)m*!
<QaQ)m+1 .

Consequently,

¢(t) _ Z (Zt(l — Q))k’

= (@G

which is the expansion of g-exponential function, the unique solution of (4.3). See
[1,11].
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Example 4.6. Let 3(t) = gt + w, ¢ € (0,1), w > 0. Then sy = 1 Y and Bi(t) =
i —dq i i (tl—q) —w
i+t S0, (5.0) = (11— ) — ) and (51() — 50) = D=,

Therefore,
( o) k—1
- t(l—q)— -1
Z <H(t<1 —q) - w>qZ§-:m> <((1Mq2?_1 z]->’
i1,i2,i3,0mik_1=0  I=1 —4
ag(t) = 9 if k> 2,
t— S0, if k = ].,
L 1, if k =0.
We prove by induction that
t(l—q) —w)*
ak(t)f(( D=9y g1 4.5)
O
t(l—q)—
For k = 0, ap(t) = 1. For k = 1, ay(t) = % =t — sp. Fork = 2,
—q
t(1—¢q) —w)?
ay(t) = (1~ 9) wg . Suppose that (4.5) is true for £ = m. Then for k = m + 1,
(1-q)(1—¢)
we have
mir(t) = Y (qil <t(1 —q) — w)) (qil”z (t(l —q) — W>> Sk
i1,i9, yim=0
o , i1 tig+tim )
(q11+12+...+zm (t(l o q) - w)) (q (t(l Q) w))
l—gq
(1 —q) — W)™ & (m+1)i = mi - Vi
11:0 7,2:0 ”Lm:O
(t(1 —q) —w)™*!
1= —=¢*)--- (L —gm)(L—gm+)
_ (t(l—q) —w)m!
(CIaq)m—i-l .
Hence,

which is the Hahn-exponential function, the unique solution of (4.3). See [1].

We combine Theorem 2.12 and Theorem 4.4 to obtain the following result.
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Proposition 4.7. Let z € C. The (3-exponential function e ,(t) has the expansion

e (t) = ) 2Fau(t), (4.6)
k=0
o] k—1 o
Z (H(ﬁ’ﬁ)zgzw) (/@ijl Y (t) —30>, if k>2,
ap(t) = < ivinsisin1=0  I=1
t = so, if k=1,

5 Conclusion

This paper was devoted to use the fixed point method for proving the existence and
uniqueness of solutions of the S-initial value problem associated with the S-difference
operator which is defined by Dgf(t) = (f(B8(t)) — f(t))/(B(t) —t), for every ¢ with
t # B(t) where f is an arbitrary function defined on I C R and f3 is a strictly increasing
continuous function defined on / and satisfies the condition (¢ — s¢)(5(t) —t) < 0 for
every t € I. Also, an expansion form of the S-exponential function was deduced by the
successive approximations method.
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