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Abstract

In this work, we consider a sequential fractional differential equation subject
to Dirichlet-type boundary conditions and we perform an analysis aiming to derive
a Lyapunov-type inequality. We cover the cases of the researcher’s most used
fractional differential operators, namely, the Riemann–Liouville and the Caputo
ones. As an application of our results, we present criteria for the nonexistence of
real zeros to a generalized sine function.
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1 Introduction
The famous Lyapunov inequality, named after the Russian mathematician A. M. Lya-
punov used it to study the stability of solutions of second order differential equations,
can be stated as follows:

Theorem 1.1 (See [9]). If the boundary value problem

y′′(t) + q(t)y(t) = 0, a < t < b,

y(a) = 0 = y(b),

has a nontrivial continuous solution, where q is a real and continuous function, then∫ b

a

|q(s)|ds > 4

b− a
. (1.1)
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Typical applications of this result include bounds for eigenvalues, stability criteria
for periodic differential equations, and estimates for intervals of disconjugacy. Thus, it
is not surprising that scholars have written surveys and books in which Lyapunov-type
inequalities play a major role [2, 13].

The author succeeded to generalize Theorem 1.1 for boundary value problems in
which the classical derivative y′′ is replaced by a fractional derivative aDα (cf. the
definitions in Section 2), namely, the Riemann–Liouville fractional derivative or the
Caputo fractional derivative (cf. [4] and [5], respectively).

In this work we aim to obtain a Lyapunov-type inequality for a different problem
from those cited above. Indeed, we will consider the following sequential fractional
boundary value problem,

(aDαaDβy)(t) + q(t)y(t) = 0, a < t < b, (1.2)
y(a) = 0 = y(b), (1.3)

where α, β are some real numbers to be defined later and aDα stands for the Riemann–
Liouville or the Caputo fractional derivative. Some applications of linear ordinary se-
quential fractional differential equations may be found in [8, Section 7.6] while initial
developments on these (sequential) operators may be consulted in the book [10].

At a first glance one might think that because the fractional boundary value problem
(1.2)–(1.3) has only a minor change in its formulation, when compared to the ones stud-
ied in [4, 5], then the analysis will be somehow the same. However, our experience in
dealing with this subject taught us that changing (only) the fractional operator may lead
to a more complex analysis of the problem (cf. the differences between the Riemann–
Liouville and the Caputo cases in [4] and [5], respectively). Let us now make a brief
description of why this happens: To obtain a Lyapunov-type inequality for a fractional
boundary value problem we use a method that goes back at least to Nehari [11]. The
method consists in transforming the BVP into an equivalent integral form and then find
the maximum of the modulus of its Green’s function. The advantage is that then you
will need not have to use properties of the classical calculus that do not necessarily
hold within the fractional calculus setting (cf. Borg’s proof of the Lyapunov inequality
in [2, Section 1]); we will only be dealing with an integral equation and, in some sense,
forget about fractional calculus. To make things more precise, suppose that a given
boundary value problem is equivalent to the integral equation

y(t) =

∫ b

a

G(t, s)q(s)y(s)ds,

where G stands for the Green’s function, as known usually in the literature. Then,
assuming y is nontrivial (which implies that q is not the zero function and G is not
constant in view that in our study G(a, s) = 0, s ∈ [a, b]), we get

‖y‖ < max
(t,s)∈[a,b]×[a,b]

|G(t, s)|
∫ b

a

|q(s)|ds‖y‖,
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or
1

max(t,s)∈[a,b]×[a,b] |G(t, s)|
<

∫ b

a

|q(s)|ds, (1.4)

being (1.4) the desired Lyapunov inequality. The drawback is that the Green’s function
might be very complex to analyze1, e.g. so far we are aware of results for fractional
differential equations with order between one and two and one of order between three
and four [4–7, 12, 15], in contrast to the classical case (cf. [13, Section 2.1.1.3]).

The plan of this manuscript is as follows: in Section 2 we provide to the reader a
brief introduction to some of the fractional calculus concepts and results. In Section 3
we prove our results and finally, in Section 4, we present an example of application of
one of our Lyapunov-type inequalities.

2 Fractional Calculus
We will introduce the concepts as well as some results used throughout this work.

Definition 2.1. Let α ≥ 0 and f be a real function defined on [a, b]. The Riemann–
Liouville fractional integral of order α is defined by (I0q f)(x) = f(x) and

(aI
αf)(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, α > 0, t ∈ [a, b].

Definition 2.2. The Riemann–Liouville fractional derivative of order α ≥ 0 is defined
by

(aD
0f)(t) = f(t) and (aD

αf)(t) = (Dm
aI

m−αf)(t) for α > 0,

where m is the smallest integer greater or equal than α.

Definition 2.3. The Caputo fractional derivative of order α ≥ 0 is defined by

(CaD
0f)(t) = f(t) and (CaD

αf)(t) = (aI
m−αDmf)(t) for α > 0,

where m is the smallest integer greater or equal than α.

The following sequence of results may be found in the book by Kilbas et al. [8].

Proposition 2.4. Let f be a continuous function on some interval I and α, β > 0. Then

(aI
α
aI

βf)(t) = (aI
α+βf)(t) = (aI

β
aI

αf)(t) on I.

Proposition 2.5. Let f be a continuous function on some interval I and α > 0. Then

(aDαaIαf)(t) = f(t) on I,

with aD being the Riemann–Liouville or the Caputo fractional operator.
1We will comment about the difficulties we had to obtain the Lyapunov inequality for the Caputo case

when compared to the one studied in [5].
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Proposition 2.6. The general solution y of the following fractional differential equation

(aD
αy)(t) = f(t), t > a, 0 < α ≤ 1,

is y(t) = c(t− a)α−1 + (aI
αf)(t), c ∈ R.

Proposition 2.7. The general solution y of the following fractional differential equation

(CaD
αy)(t) = f(t), t ≥ a, 0 < α ≤ 1,

is y(t) = c+ (aI
αf)(t), c ∈ R.

3 Main Results
In this section we present and prove our main accomplishments. For the reader’s benefit
we provide the results in two different subsections, the first one containing the results
using the Riemann–Liouville fractional differential operator and the second one using
the Caputo fractional differential operator.

3.1 Riemmann–Liouville’s Case

Let 0 < α, β ≤ 1 and fix 1 < γ := α+ β ≤ 2. Moreover, assume that q is a real valued
continuous function on [a, b].

Deriving a Lyapunov-type inequality for the boundary value problem

(aD
α
aD

βy)(t) + q(t)y(t) = 0, a < t < b, (3.1)
y(a) = 0 = y(b), (3.2)

is actually easy because we can use [4, Theorem 2.1] in this case. Indeed, assuming that
(3.1)–(3.2) has a nontrivial solution y ∈ C[a, b], then it is of the form

y(t) = c
Γ(α)

Γ(γ)
(t− a)γ−1 − (aI

γqy)(t),

by Proposition 2.6 and the fact that aIβ(t − a)α−1 =
Γ(α)

Γ(α + β)
(t − a)α+β−1 (c ∈ R is

determined by the condition y(b) = 0). It is clear that y′ is integrable on [a, b]. Then
(see [14, Section 2.3.6–2.3.7]),

(aD
α
aD

βy)(t) = (aD
γy)(t).

The following result is therefore an immediate consequence of [4, Theorem 2.1].
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Theorem 3.1. If the fractional boundary value problem (3.1)–(3.2) has a nontrivial
continuous solution, then ∫ b

a

|q(s)|ds > Γ(γ)

(
4

b− a

)γ−1
. (3.3)

Remark 3.2. Note that if α = β = 1, i.e., γ = 2, then we get the classical Lyapunov
inequality (1.1).

3.2 Caputo’s Case
We consider now the BVP (1.2)–(1.3) with aDδ =C

a D
δ, for δ ∈ {α, β}.

Remark 3.3. Contrarily to the Riemann–Liouville case, for a continuous function y the
equality (CaD

αC
aD

βy)(t) = (CaD
α+βy)(t) does not hold in general (see [3, Remark 3.4.

(b)]).

Lemma 3.4. Let 0 < α, β ≤ 1 be such that 1 < α + β ≤ 2 and q ∈ C[a, b] for some
a < b. Then, y ∈ C[a, b] is a solution of the fractional boundary value problem

(CaD
αC
aD

βy)(t) + q(t)y(t) = 0, a < t < b, (3.4)
y(a) = 0 = y(b), (3.5)

if, and only if, y satisfies the integral equation

y(t) =

∫ b

a

G(t, s)q(s)y(s)ds,

where

G(t, s) =
1

Γ(α + β)


(b− s)α+β−1(t− a)β

(b− a)β
− (t− s)α+β−1, a ≤ s ≤ t ≤ b,

(b− s)α+β−1(t− a)β

(b− a)β
, a ≤ t ≤ s ≤ b.

Proof. The proof is just a repeated application of Proposition 2.7 and the concomitant
use of the boundary conditions. We leave the details to the reader.

The rest of this section is devoted essentially to determine the maximum of |G(t, s)|
for (t, s) ∈ [a, b] × [a, b]. We will not write it as a “proof” since we will comment on
the difficulties and challenges when tackling this problem, which constitute the main
differences to the ones studied before by the author [4, 5].

Let us start by defining a function:

g1(t, s) =
(b− s)α+β−1(t− a)β

(b− a)β
, a ≤ t ≤ s ≤ b.
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g1 is obviously nonnegative. Moreover,

g1(t, s) ≤
(b− s)α+β−1(s− a)β

(b− a)β
:= f(s), s ∈ [a, b].

So, we are left to find max
s∈[a,b]

f(s). We have,

f ′(s) =
1

(b− a)β
[−(α + β − 1)(b− s)α+β−2(s− a)β + (b− s)α+β−1β(s− a)β−1]

=
(b− s)α+β−2(s− a)β−1

(b− a)β
[−(α + β − 1)(s− a) + β(b− s)],

from which follows that f ′(s) = 0 if, and only if, s =
(α + β − 1)a+ βb

α + 2β − 1
and f ′(s) > 0

for s <
(α + β − 1)a+ βb

α + 2β − 1
and f ′(s) < 0 for s >

(α + β − 1)a+ βb

α + 2β − 1
. We conclude

that,

max
(t,s)∈[a,b]×[a,b]

|g1(t, s)| = f

(
(α + β − 1)a+ βb

α + 2β − 1

)

=

(
b− (α+β−1)a+βb

α+2β−1

)α+β−1 (
(α+β−1)a+βb

α+2β−1 − a
)β

(b− a)β

=
(α + β − 1)α+β−1ββ

(α + 2β − 1)α+2β−1 (b− a)α+β−1. (3.6)

Now we define a function g2 by:

g2(t, s) =
(b− s)α+β−1(t− a)β

(b− a)β
− (t− s)α+β−1, a ≤ s ≤ t ≤ b.

This function resembles the corresponding one in [5]. The substantial difference is that
the factor (t − a)δ in [5] is of order δ = 1 while here is of order δ = β. This fact
allowed us to determine immediately in [5] the zero of the derivative of g2 with respect
to t for an arbitrary but fixed s (cf. [5, Lemma 2] for the details). However, in this work
we cannot proceed as in [5] in view that

∂tg2(t, s) =
(b− s)α+β−1β(t− a)β−1

(b− a)β
− (α + β − 1)(t− s)α+β−2. (3.7)

Fortunately we can use the Fritz John theorem and take advantage of some kind of
symmetry of the partial derivatives of our problem in order to find the candidates to
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maxima of the function g2(t, s) with a < s < t < b. We have

∂tg2(t, s) =
(b− s)α+β−1β(t− a)β−1

(b− a)β
− (α + β − 1)(t− s)α+β−2 = 0, (3.8)

∂sg2(t, s) =
−(α + β − 1)(b− s)α+β−2(t− a)β

(b− a)β
+ (α + β − 1)(t− s)α+β−2 = 0,

(3.9)

from which follows that

(b− s)α+β−2(t− a)β−1

(b− a)β
[β(b− s)− (α + β − 1)(t− a)] = 0,

or

t = a+
β(b− s)
α + β − 1

, (3.10)

provided s < t < b. Note that it is very hard (if not impossible) to find the solutions in
s from inserting (3.10) in (3.8) or (3.9). Therefore, our approach consists in inserting
(3.10) in g2 and then perform an analysis of the resulting function of only the variable
s. Before we start the mentioned analysis we need to find out which interval s belongs.
On one hand we have,

s < t⇔ s < a+
β(b− s)
α + β − 1

⇔ s <
a(α + β − 1) + βb

α + 2β − 1
.

On the other hand we get,

t < b⇔ a+
β(b− s)
α + β − 1

< b (3.11)

⇔ s >
a(α + β − 1) + b(1− α)

β
. (3.12)

Let us finally consider the following function:

F (s) : =
(b− s)α+β−1

(
a+ β(b−s)

α+β−1 − a
)β

(b− a)β
−
(
a+

β(b− s)
α + β − 1

− s
)α+β−1

,

=
(b− s)α+2β−1ββ

(α + β − 1)β(b− a)β
−
(
a+

β(b− s)
α + β − 1

− s
)α+β−1

,

with
a(α + β − 1) + b(1− α)

β
< s <

a(α + β − 1) + βb

α + 2β − 1
. Fortunately we needed

not to calculate zeros of the derivative for this function as it happens that it is strictly
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increasing. To prove this last statement we start differentiating F :

F ′(s) = −(α + 2β − 1)(b− s)α+2β−2ββ

(α + β − 1)β(b− a)β
+(α+2β−1)

(
a+

β(b− s)
α + β − 1

− s
)α+β−2

.

By (3.11) and the fact that α + β − 2 < 0 and α + 2β − 1 > 0, we get that

F ′(s) > −(α + 2β − 1)(b− s)α+2β−2ββ

(α + β − 1)β(b− a)β
+ (α + 2β − 1) (b− s)α+β−2

= (α + 2β − 1)(b− s)α+β−2
(

1− (b− s)βββ

(α + β − 1)β(b− a)β

)
> 0,

where the last inequality follows from (3.12). Therefore,

max
s∈[a(α+β−1)+b(1−α)

β
,
a(α+β−1)+βb
α+2β−1 ]

|F (s)| = F

(
a(α + β − 1) + βb

α + 2β − 1

)
,

=
(α + β − 1)α+β−1ββ

(α + 2β − 1)α+2β−1 (b− a)α+β−1,

in view that F
(
a(α + β − 1) + b(1− α)

β

)
= 0.

The following result is therefore valid.

Proposition 3.5. The function G defined in Lemma 3.4 satisfies the following property:

|G(t, s)| ≤ (b− a)α+β−1

Γ(α + β)

(α + β − 1)α+β−1ββ

(α + 2β − 1)α+2β−1 , (t, s) ∈ [a, b]× [a, b],

with equality if and only if

t = s =
a(α + β − 1) + βb

α + 2β − 1
.

Theorem 3.6. If the fractional boundary value problem (3.4)–(3.5) has a nontrivial
continuous solution, then∫ b

a

|q(s)|ds > Γ(α + β)

(b− a)α+β−1
(α + 2β − 1)α+2β−1

(α + β − 1)α+β−1ββ
.

Remark 3.7. Observe that when α = β = 1, then Theorem 3.6 reduces to Theorem 1.1.
Again this shows that Theorem 3.6 is a generalization of Theorem 1.1.
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4 An Example of Application
We will end this work presenting an application of Theorem 3.1. Consider the following
sequential fractional differential equation

(0D
α
0D

αy)(t) + λ2y(t) = 0, λ ∈ R, t ∈ (0, 1),
1

2
< α ≤ 1. (4.1)

The fundamental set of solutions to (4.1) is (cf. [1, Example 1])

{cosα(λt), sinα(λt)},

where2

cosα(λt) =
∞∑
j=0

(−1)jλ2j
t(2j+1)α−1

Γ((2j + 1)α)
,

and

sinα(λt) =
∞∑
j=0

(−1)jλ2j+1 t(j+1)2α−1

Γ((j + 1)2α)
.

Therefore the general solution of (4.1) is

y(t) = c cosα(λt) + d sinα(λt). (4.2)

Now, the nontrivial solutions of (4.2) for which the boundary conditions y(0) = 0 =
y(1) hold, satisfy

sinα(λ) = 0,

where λ is a real number different from zero (eigenvalue). By Theorem 3.1, the follow-
ing inequality then holds

λ2 > Γ(2α)42α−1,

or in other words:

Theorem 4.1. Let
1

2
< α ≤ 1. If

|t| ≤
√

Γ(2α)42α−1, t 6= 0,

then sinα(t) has not real zeros.

Remark 4.2. Analogous results to the ones in this section can be obtained if we use the
Caputo fractional operator and the trigonometric functions as defined in [1, Example 2].

2The definitions of cosα and sinα in [1] should be as we are writing them here.
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lation of a Russian paper dated 1893), Ann. Fac. Sci. Univ. Toulouse 2 (1907),
27–247, Reprinted as Ann. Math. Studies, No, 17, Princeton, 1947.

[10] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional
differential equations, A Wiley-Interscience Publication, Wiley, New York, 1993.

[11] Z. Nehari, On the zeros of solutions of second-order linear differential equations,
Amer. J. Math. 76 (1954), 689–697.



Lyapunov-Type Inequalities 43

[12] D. O’Regan and B. Samet, Lyapunov-type inequalities for a class of fractional
differential equations, J. Inequal. Appl. 2015, 2015:247.

[13] J. P. Pinasco, Lyapunov-type inequalities, Springer Briefs in Mathematics, Sprin-
ger, New York, 2013.

[14] I. Podlubny, Fractional differential equations, Mathematics in Science and Engi-
neering, 198, Academic Press, San Diego, CA, 1999.

[15] J. Rong and C. Bai, Lyapunov-type inequality for a fractional differential equation
with fractional boundary conditions, Adv. Difference Equ. 2015, 2015:82, 10 pp.


