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Abstract

In this paper, using our bifurcational geometric approach, we complete the
solution of the problem on the maximum number and distribution of limit cycles
in the general Liénard polynomial system.
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1 Introduction
In this paper, we continue studying the Liénard equation

ẍ+ f(x) ẋ+ g(x) = 0 (1.1)

and the corresponding dynamical system

ẋ = y, ẏ = −g(x)− f(x)y (1.2)

which we have done in [7, 10, 11, 13, 14, 16–20].
We suppose that system (1.2), where g(x) and f(x) are arbitrary polynomial, has an

anti-saddle (a node or a focus, or a center) at the origin and write it in the form

ẋ = y, ẏ = −x (1 + a1 x+ . . .+ a2l x
2l) + y (α0 + α1 x+ . . .+ α2k x

2k). (1.3)
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Note that for g(x) ≡ x, by the change of variables X = x and Y = y + F (x),

where F (x) =

∫ x

0

f(s) ds, (1.3) is reduced to an equivalent system

Ẋ = Y − F (X), Ẏ = −X (1.4)

which can be written in the form

ẋ = y, ẏ = −x+ F (y) (1.5)
or

ẋ = y, ẏ = −x+ γ1 y + γ2 y
2 + γ3 y

3 + . . .+ γ2k y
2k + γ2k+1 y

2k+1. (1.6)

In [10,11,16,17], we have presented a solution of Smale’s thirteenth problem [25] prov-
ing that the Liénard system (1.6) with a polynomial of degree 2k + 1 can have at most
k limit cycles and we can conclude now that our results [10, 11, 16, 17] agree with the
conjecture of [22] on the maximum number of limit cycles for the classical Liénard
polynomial system (1.6). It makes the attempts to construct counterexamples to this
conjecture undertaken, e. g., in [4, 5] futile, especially, if these “counterexamples” are
absolutely wrong. In [18–20], under some assumptions on the parameters of (1.3), we
have found the maximum number of limit cycles and their possible distribution for the
general Liénard polynomial system. In [6, 8, 9, 12], we have also presented a solution
of Hilbert’s sixteenth problem in the quadratic case of polynomial systems proving that
for quadratic systems four is really the maximum number of limit cycles and (3 : 1) is
their only possible distribution. We have established some preliminary results on gene-
ralizing our ideas and methods to special cubic, quartic and other polynomial dynamical
systems as well. In [7], e. g., we have constructed a canonical cubic dynamical system
of Kukles type and have carried out the global qualitative analysis of its special case cor-
responding to a generalized cubic Liénard equation. In particular, it has been shown that
the foci of such a Liénard system can be at most of second order and that such system
can have at most three limit cycles in the whole phase plane. Moreover, unlike all previ-
ous works on the Kukles-type systems, global bifurcations of limit and separatrix cycles
using arbitrary (including as large as possible) field rotation parameters of the canonical
system have been studied. As a result, a classification of all possible types of separa-
trix cycles for the generalized cubic Liénard system has been obtained and all possible
distributions of its limit cycles have been found. In [13, 14], we have completed the
global qualitative analysis of a planar Liénard-type dynamical system with a piecewise
linear function containing an arbitrary number of dropping sections and approximating
an arbitrary polynomial function. In [2], we have carried out the global qualitative ana-
lysis of centrally symmetric cubic systems which are used as learning models of planar
neural networks. In [3], we have completed the global qualitative analysis of a quar-
tic dynamical system which models the dynamics of the populations of predators and
their prey in a given ecological system. In [15], we have studied multiple limit cycle
bifurcations in the well-known FitzHugh–Nagumo neuronal model.
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We use the obtained results and develop our methods for studying limit cycle bifur-
cations of polynomial dynamical systems in this paper as well. In Section 2, applying
canonical systems with field rotation parameters and using geometric properties of the
spirals filling the interior and exterior domains of limit cycles, we complete the solu-
tion of the problem on the maximum number and distribution of limit cycles in the
general Liénard polynomial system. This is related to the solution of Hilbert’s sixteenth
problem on the maximum number and distribution of limit cycles in planar polynomial
dynamical systems.

2 Limit Cycle Bifurcations
By means of our bifurcational geometric approach [7, 10, 11, 13, 14, 16–20], we will
consider now the general Liénard polynomial system (1.3). The study of singular points
of system (1.3) will use two index theorems by H. Poincaré; see [1]. The definition of
the Poincaré index is the following [1].

Definition 2.1. Let S be a simple closed curve in the phase plane not passing through a
singular point of the system

ẋ = P (x, y), ẏ = Q(x, y), (2.1)

where P (x, y) andQ(x, y) are continuous functions (for example, polynomials), andM
be some point on S. If the point M goes around the curve S in the positive direction
(counterclockwise) one time, then the vector coinciding with the direction of a tangent
to the trajectory passing through the point M is rotated through the angle 2πj (j =
0,±1,±2, . . .). The integer j is called the Poincaré index of the closed curve S relative
to the vector field of system (2.1) and has the expression

j =
1

2π

∮
S

P dQ−Q dP

P 2 +Q2
. (2.2)

According to this definition, the index of a node or a focus, or a center is equal to +1
and the index of a saddle is −1. The following Poincaré index theorems are valid [1].

Theorem 2.2. If N, Nf , Nc, and C are respectively the number of nodes, foci, centers,
and saddles in a finite part of the phase plane and N ′ and C ′ are the number of nodes
and saddles at infinity, then it is valid the formula

N +Nf +Nc +N ′ = C + C ′ + 1. (2.3)

Theorem 2.3. If all singular points are simple, then along an isocline without multiple
points lying in a Poincaré hemisphere which is obtained by a stereographic projection
of the phase plane, the singular points are distributed so that a saddle is followed by a
node or a focus, or a center and vice versa. If two points are separated by the equator
of the Poincaré sphere, then a saddle will be followed by a saddle again and a node or
a focus, or a center will be followed by a node or a focus, or a center.
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Consider system (1.3) supposing that a21 + . . . + a22l 6= 0. Its finite singularities are
determined by the algebraic system

x (1 + a1 x+ . . .+ a2l x
2l) = 0, y = 0. (2.4)

This system always has an anti-saddle at the origin and, in general, can have at most
2l + 1 finite singularities which lie on the x-axis and are distributed so that a saddle
(or saddle-node) is followed by a node or a focus, or a center and vice versa [1]. For
studying the infinite singularities, the methods applied in [1] for Rayleigh’s and van der
Pol’s equations and also Erugin’s two-isocline method developed in [6] can be used;
see [10, 11, 16–20].

Following [6], we will study limit cycle bifurcations of (1.3) by means of canonical
systems containing field rotation parameters of (1.3) [1, 6].

Theorem 2.4. The Liénard polynomial system (1.3) with limit cycles can be reduced to
one of the canonical forms:

ẋ = y,

ẏ = −x (1 + a1x+ . . .+ a2lx
2l)

+ y(α0−β1−. . .−β2k−1+β1x+α2x
2+. . .+β2k−1x

2k−1+α2kx
2k)

(2.5)

or

ẋ = y ≡ P (x, y),

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(α0−β1−. . .−β2k−1+β1x+α2x
2+. . .+β2k−1x

2k−1+α2kx
2k) ≡ Q(x, y),

(2.6)

where 1 + a1x + . . . + a2lx
2l 6= 0, α0, α2, . . . , α2k are field rotation parameters and

β1, β3, . . . , β2k−1 are semi-rotation parameters.

Proof. Let us compare system (1.3) with (2.5) and (2.6). It is easy to see that system
(2.5) has the only finite singular point: an anti-saddle at the origin. System (2.6) has
at list two singular points including an anti-saddle at the origin and a saddle which,
without loss of generality, can be always putted into the point (1, 0). Instead of the odd
parameters α1, α3, . . . , α2k−1 in system (1.3), also without loss of generality, we have
introduced new parameters β1, β3, . . . , β2k−1 into (2.5) and (2.6).

We will study now system (2.6) (system (2.5) can be studied absolutely similarly).
Let all of the parameters α0, α2, . . . , α2k and β1, β3, . . . , β2k−1 vanish in this system,

ẋ = y, ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1), (2.7)

and consider the corresponding equation

dy

dx
=
x(x− 1)(1 + b1x+ . . .+ b2l−1x

2l−1)

y
≡ F (x, y). (2.8)
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Since F (x,−y) = −F (x, y), the direction field of (2.8) (and the vector field of (2.7)
as well) is symmetric with respect to the x-axis. It follows that for arbitrary values of the
parameters b1, . . . , b2l−1 system (2.7) has centers as anti-saddles and cannot have limit
cycles surrounding these points. Therefore, we can fix the parameters b1, . . . , b2l−1 in
system (2.6), fixing the position of its finite singularities on the x-axis.

To prove that the even parameters α0, α2, . . . , α2k rotate the vector field of (2.6),
let us calculate the following determinants:

∆α0 = P Q′α0
−QP ′α0

= y2 ≥ 0,

∆α2 = P Q′α2
−QP ′α2

= x2y2 ≥ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆α2k
= P Q′α2k

−QP ′α2k
= x2ky2 ≥ 0.

By definition of a field rotation parameter [1, 6], for increasing each of the parameters
α0, α2, . . . , α2k, under the fixed others, the vector field of system (2.6) is rotated in
the positive direction (counterclockwise) in the whole phase plane; and, conversely, for
decreasing each of these parameters, the vector field of (2.6) is rotated in the negative
direction (clockwise).

Calculating the corresponding determinants for the parameters β1, β3, . . . , β2k−1,
we can see that

∆β1 = P Q′β1 −QP
′
β1

= (x− 1) y2,

∆β3 = P Q′β3 −QP
′
β3

= (x3 − 1) y2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆β2k−1
= P Q′β2k−1

−QP ′β2k−1
= (x2k−1− 1) y2.

It follows [1, 6] that, for increasing each of the parameters β1, β3, . . . , β2k−1, under the
fixed others, the vector field of system (2.6) is rotated in the positive direction (counter-
clockwise) in the half-plane x > 1 and in the negative direction (clockwise) in the
half-plane x < 1 and vice versa for decreasing each of these parameters. We will call
these parameters as semi-rotation ones.

Thus, for studying limit cycle bifurcations of (1.3), it is sufficient to consider the
canonical systems (2.5) and (2.6) containing the field rotation parameters α0, α2, . . . ,
α2k and the semi-rotation parameters β1, β3, . . . , β2k−1. The theorem is proved.

By means of the canonical systems (2.5) and (2.6), we will prove the following
theorem.

Theorem 2.5. The Liénard polynomial system (1.3) can have at most k + l + 1 limit
cycles, k+1 surrounding the origin and l surrounding one by one the other singularities
of (1.3).
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Proof. According to Theorem 2.4, for the study of limit cycle bifurcations of sys-
tem (1.3), it is sufficient to consider the canonical systems (2.5) and (2.6) containing the
field rotation parameters α0, α2, . . . , α2k and the semi-rotation parameters β1, β3, . . . ,
β2k−1. We will work with (2.6) again (system (2.5) can be considered in a similar way).

Vanishing all of the parameters α0, α2, . . . , α2k and β1, β3, . . . , β2k−1 in (2.6), we
will have system (2.7) which is symmetric with respect to the x-axis and has centers as
anti-saddles. Its center domains are bounded by either separatrix loops or digons of the
saddles or saddle-nodes of (2.7) lying on the x-axis.

Let us input successively the semi-rotation parameters β1, β3, . . . , β2k−1 into sys-
tem (2.7) beginning with the parameters at the highest degrees of x and alternating with
their signs. So, begin with the parameter β2k−1 and let, for definiteness, β2k−1 > 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−1 + β2k−1x
2k−1).

(2.9)

In this case, the vector field of (2.9) is rotated in the negative direction (clockwise)
in the half-plane x < 1 turning the center at the origin into a rough stable focus. All
of the other centers lying in the half-plane x > 1 become rough unstable foci, since
the vector field of (2.9) is rotated in the positive direction (counterclockwise) in this
half-plane [1, 6].

Fix β2k−1 and input the parameter β2k−3 < 0 into (2.9):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−3 − β2k−1 + β2k−3x
2k−3 + β2k−1x

2k−1).

(2.10)

Then the vector field of (2.10) is rotated in the opposite directions in each of the half-
planes x < 1 and x > 1. Under decreasing β2k−3, when β2k−3 = −β2k−1, the focus at
the origin becomes nonrough (weak), changes the character of its stability and gener-
ates a stable limit cycle. All of the other foci in the half-plane x > 1 will also generate
unstable limit cycles for some values of β2k−3 after changing the character of their sta-
bility. Under further decreasing β2k−3, all of the limit cycles will expand disappearing
on separatrix cycles of (2.10) [1, 6].

Denote the limit cycle surrounding the origin by Γ0, the domain outside the cycle by
D01, the domain inside the cycle by D02 and consider logical possibilities of the appear-
ance of other (semi-stable) limit cycles from a “trajectory concentration” surrounding
this singular point. It is clear that, under decreasing the parameter β2k−3, a semi-stable
limit cycle cannot appear in the domain D02, since the focus spirals filling this domain
will untwist and the distance between their coils will increase because of the vector field
rotation [10, 11, 16–20].

By contradiction, we can also prove that a semi-stable limit cycle cannot appear in
the domain D01. Suppose it appears in this domain for some values of the parameters
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β∗2k−1 > 0 and β∗2k−3 < 0. Return to system (2.7) and change the inputting order for the
semi-rotation parameters. Input first the parameter β2k−3 < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β2k−3 + β2k−3x
2k−3).

(2.11)

Fix it under β2k−3 = β∗2k−3. The vector field of (2.11) is rotated counterclockwise and
the origin turns into a rough unstable focus. Inputting the parameter β2k−1 > 0 into
(2.11), we get again system (2.10) the vector field of which is rotated clockwise. Under
this rotation, a stable limit cycle Γ0 will appear from a separatrix cycle for some value of
β2k−1. This cycle will contract, the outside spirals winding onto the cycle will untwist
and the distance between their coils will increase under increasing β2k−1 to the value
β∗2k−1. It follows that there are no values of β∗2k−3 < 0 and β∗2k−1 > 0 for which a
semi-stable limit cycle could appear in the domain D01.

This contradiction proves the uniqueness of a limit cycle surrounding the origin
in system (2.10) for any values of the parameters β2k−3 and β2k−1 of different signs.
Obviously, if these parameters have the same sign, system (2.10) has no limit cycles
surrounding the origin at all. On the same reason, this system cannot have more than
l limit cycles surrounding the other singularities (foci or nodes) of (2.10) one by one.

It is clear that inputting the other semi-rotation parameters β2k−5, . . . , β1 into sys-
tem (2.10) will not give us more limit cycles, since all of these parameters are rough with
respect to the origin and the other anti-saddles lying in the half-plane x > 1. Therefore,
the maximum number of limit cycles for the system

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(−β1 − . . .− β2k−3 − β2k−1 + β1x+ . . .+ β2k−3x
2k−3 + β2k−1x

2k−1)

(2.12)

is equal to l+ 1 and they surround the anti-saddles (foci or nodes) of (2.12) one by one.
Suppose that β1+ . . .+β2k−3+β2k−1 > 0 and input the last rough parameter α0 > 0

into system (2.12):
ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(α0 − β1 − . . .− β2k−1 + β1x+ . . .+ β2k−1x
2k−1).

(2.13)

This parameter rotating the vector field of (2.13) counterclockwise in the whole phase
plane also will not give us more limit cycles, but under increasing α0, when α0 =
β1 + . . .+ β2k−1, we can make the focus at the origin nonrough (weak), after the disap-
pearance of the limit cycle Γ0 in it. Fix this value of the parameter α0 (α0 = α∗0) :

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1).

(2.14)
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Let us input now successively the other field rotation parameters α2, . . . , α2k into sys-
tem (2.14) beginning again with the parameters at the highest degrees of x and alter-
nating with their signs; see [10, 11, 16–20]. So, begin with the parameter α2k and let
α2k < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2kx

2k).

(2.15)

In this case, the vector field of (2.15) is rotated clockwise in the whole phase plane and
the focus at the origin changes the character of its stability generating again a stable limit
cycle. The limit cycles surrounding the other singularities of (2.15) can also still exist.
Denote the limit cycle surrounding the origin by Γ1, the domain outside the cycle by
D1 and the domain inside the cycle by D2. The uniqueness of a limit cycle surrounding
the origin (and limit cycles surrounding the other singularities) for system (2.15) can be
proved by contradiction like we have done above for (2.10); see also [10, 11, 16–20].

Let system (2.15) have the unique limit cycle Γ1 surrounding the origin and l limit
cycles surrounding the other antisaddles of (2.15). Fix the parameter α2k < 0 and input
the parameter α2k−2 > 0 into (2.15):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−2x

2k−2 + α2kx
2k).

(2.16)

Then the vector field of (2.16) is rotated in the opposite direction (counterclockwise) and
the focus at the origin immediately changes the character of its stability (since its de-
gree of nonroughness decreases and the sign of the field rotation parameter at the lower
degree of x changes) generating the second (unstable) limit cycle Γ2. The limit cycles
surrounding the other singularities of (2.16) can only disappear in the corresponding
foci (because of their roughness) under increasing the parameter α2k−2. Under further
increasing α2k−2, the limit cycle Γ2 will join with Γ1 forming a semi-stable limit cycle,
Γ12, which will disappear in a “trajectory concentration” surrounding the origin. Can
another semi-stable limit cycle appear around the origin in addition to Γ12? It is clear
that such a limit cycle cannot appear either in the domain D1 bounded on the inside
by the cycle Γ1 or in the domain D3 bounded by the origin and Γ2 because of the in-
creasing distance between the spiral coils filling these domains under increasing the
parameter [10, 11, 16–20].

To prove the impossibility of the appearance of a semi-stable limit cycle in the do-
main D2 bounded by the cycles Γ1 and Γ2 (before their joining), suppose the contrary,
i.e., that for some values of these parameters, α∗2k < 0 and α∗2k−2 > 0, such a semi-stable
cycle exists. Return to system (2.14) again and input first the parameter α2k−2 > 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−2x

2k−2).

(2.17)
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This parameter rotates the vector field of (2.17) counterclockwise preserving the origin
as a nonrough stable focus.

Fix this parameter under α2k−2 = α∗2k−2 and input the parameter α2k < 0 into (2.17)
getting again system (2.16). Since, by our assumption, this system has two limit cycles
surrounding the origin for α2k > α∗2k, there exists some value of the parameter, α12

2k

(α12
2k < α∗2k < 0), for which a semi-stable limit cycle, Γ12, appears in system (2.16) and

then splits into a stable cycle Γ1 and an unstable cycle Γ2 under further decreasing α2k.
The formed domain D2 bounded by the limit cycles Γ1, Γ2 and filled by the spirals will
enlarge since, on the properties of a field rotation parameter, the interior unstable limit
cycle Γ2 will contract and the exterior stable limit cycle Γ1 will expand under decreasing
α2k. The distance between the spirals of the domain D2 will naturally increase, which
will prevent the appearance of a semi-stable limit cycle in this domain for α2k < α12

2k

[10, 11, 16–20].
Thus, there are no such values of the parameters, α∗2k < 0 and α∗2k−2 > 0, for

which system (2.16) would have an additional semi-stable limit cycle surrounding the
origin. Obviously, there are no other values of the parameters α2k and α2k−2 for which
system (2.16) would have more than two limit cycles surrounding this singular point.
On the same reason, additional semi-stable limit cycles cannot appear around the other
singularities (foci or nodes) of (2.16). Therefore, l+ 2 is the maximum number of limit
cycles in system (2.16).

Suppose that system (2.16) has two limit cycles, Γ1 and Γ2, surrounding the origin
and l limit cycles surrounding the other antisaddles of (2.16) (this is always possible if
−α2k � α2k−2 > 0). Fix the parameters α2k, α2k−2 and consider a more general system
inputting the third parameter, α2k−4 < 0, into (2.16):

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−4x

2k−4 + α2k−2x
2k−2 + α2kx

2k).

(2.18)

For decreasing α2k−4, the vector field of (2.18) will be rotated clockwise and the focus
at the origin will immediately change the character of its stability generating a third (sta-
ble) limit cycle, Γ3. With further decreasing α2k−4, Γ3 will join with Γ2 forming a semi-
stable limit cycle, Γ23, which will disappear in a “trajectory concentration” surrounding
the origin; the cycle Γ1 will expand disappearing on a separatrix cycle of (2.18).

Let system (2.18) have three limit cycles surrounding the origin: Γ1, Γ2, Γ3.Could an
additional semi-stable limit cycle appear with decreasing α2k−4 after splitting of which
system (2.18) would have five limit cycles around the origin? It is clear that such a limit
cycle cannot appear either in the domain D2 bounded by the cycles Γ1 and Γ2 or in the
domainD4 bounded by the origin and Γ3 because of the increasing distance between the
spiral coils filling these domains after decreasing α2k−4. Consider two other domains:
D1 bounded on the inside by the cycle Γ1 and D3 bounded by the cycles Γ2 and Γ3. As
before, we will prove the impossibility of the appearance of a semi-stable limit cycle in
these domains by contradiction.
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Suppose that for some set of values of the parameters α∗2k < 0, α∗2k−2 > 0 and
α∗2k−4 < 0 such a semi-stable cycle exists. Return to system (2.14) again inputting
first the parameters α2k−2 > 0 and α2k−4 < 0:

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2k−4x

2k−4 + α2kx
2k).

(2.19)

Fix the parameter α2k−2 under the value α∗2k−2. With decreasing α2k−4, a separatrix
cycle formed around the origin will generate a stable limit cycle Γ1. Fix α2k−4 under the
value α∗2k−4 and input the parameter α2k > 0 into (2.19) getting system (2.18).

Since, by our assumption, (2.18) has three limit cycles for α2k > α∗2k, there exists
some value of the parameter α23

2k (α23
2k < α∗2k < 0) for which a semi-stable limit cycle,

Γ23, appears in this system and then splits into an unstable cycle Γ2 and a stable cycle
Γ3 with further decreasing α2k. The formed domain D3 bounded by the limit cycles Γ2,
Γ3 and also the domain D1 bounded on the inside by the limit cycle Γ1 will enlarge and
the spirals filling these domains will untwist excluding a possibility of the appearance
of a semi-stable limit cycle there [10, 11, 16–20].

All other combinations of the parameters α2k, α2k−2, and α2k−4 are considered in a
similar way. It follows that system (2.18) can have at most l + 3 limit cycles.

If we continue the procedure of successive inputting the field rotation parameters,
α2k, . . . , α2, into system (2.14),

ẋ = y,

ẏ = x(x− 1)(1 + b1x+ . . .+ b2l−1x
2l−1)

+ y(β1x+ . . .+ β2k−1x
2k−1 + α2x

2 + . . .+ α2kx
2k),

(2.20)

it is possible to obtain k limit cycles surrounding the origin and l surrounding one by
one the other singularities (foci or nodes) (−α2k � α2k−2 � −α2k−4 � α2k−6 � . . .).

Then, by means of the parameter α0 6= β1 + . . . + β2k−1 (α0 > α∗0, if α2 < 0,
and α0 < α∗0, if α2 > 0), we will have the canonical system (2.6) with an additional
limit cycle surrounding the origin and can conclude that this system (i.e., the Liénard
polynomial system (1.3) as well) has at most k+ l+1 limit cycles, k+1 surrounding the
origin and l surrounding one by one the antisaddles (foci or nodes) of (2.6) (and (1.3)
as well). The theorem is proved.
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