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1 Introduction

Let T be an arbitrary time scale (nonempty closed subset of R). Asusual, o : T — T is
the forward jump operator defined by

o(t)=inf{s € T:s >t}

Also z°(t) = x(o(t)), and x°(t) denotes the time scale derivative of . Higher or-
der jump and derivative are defined inductively by ¢/(t) = o (o’ *(t)) and P (t) =
(a:A(jfl) (t))2, j > 1. It is assumed that the reader is familiar with the time scale calcu-
lus. Some preliminary definitions and theorems on time scales can be found in [1-4].

In this paper, we discuss the existence of solutions to the complementary Lidstone
boundary value problem (CLBVP) on time scales

(=122 (1) + q(B)f (¢ 2°(1)) = 0. t € [a,Blx. 0
2(a) =0, 2% (a) = 22"V (022 (B) =0 i =1,...,n, '
wheren > 1,a,b € T and f : [a,0(b)]r x R — R is continuous. Hereafter, we use the
notation [a, b| to indicate the time scale interval [a, b] N T. The interval [a, b)T, (a, b|t
and (a, b)t are similarly defined.

The complementary Lidstone interpolation and boundary value problems were dis-
cussed in [5-7]. In [6,7] the authors consider a (2n + 1)th order differential equation
together with boundary data at the odd order derivatives

z(0) = ap, ¥ V(0) =a;, 2* V1) =b;, i=1,2,...,n. (1.2)

The boundary conditions (1.2) are known as complementary Lidstone boundary condi-
tions, which naturally complement the Lidstone boundary conditions [8—11] which in-
volve even order derivatives. The Lidstone boundary value problem comprises a 2mth
order differential equation and the Lidstone boundary conditions

22(0) = a;, 2®1)=0b;, i =0,2,...,n—1.

For the Lidstone boundary value problem, we refer the reader to [12-26] and the ref-
erences cited therein. For the complementary Lidstone boundary value problem, we
refer the reader to [27-31]. In the literature there are only a few papers on Lidstone
boundary value problems on time scales [32,33] and no paper (to our knowledge) on
complementary Lidstone boundary value problems on time scales.

In Section 2, we develop some inequalities for certain Green’s functions. In Section
3, using a variety of fixed point theorems, we establish of existence of a solution (not
necessary positive), and we also discuss the existence of a nontrivial positive solution,
and two nontrivial positive solutions.
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2 Preliminaries

157

To obtain a solution for the CLBVP (1.1), we require a mapping whose kernel G (¢, s)

is the Green’s function of the Lidstone boundary value problem

(—1)"y2""(t) =0, t € [a,b]r,

(21) (23) n—2i ’ .
A% (@) = A (0 0) =0, i = 0,1, n— 1.

The Green’s function can be expressed as

2n—1 (b)
G (ts) = / Go(t, )G (r, ) Ar,

where

-1 (t —a)(o®"(b) — o(s)), t<s,
)= t

and
Gi(t,s) = Gi(t,s).
We remark that (5, is the Green’s function of the problem
y22(t) =0, y(a) = y(a®'(b)) = 0.

Furthermore, it is easily seen that from (2.3), we have

Gn(t,s) <0, (t,5) € [a,0®™(D)]r x [a,c* 2 (b)]r,
and from (2.5) and (2.2), we have

(=1)"GL(t,s) >0, (t,5) € [a,c™ ()]t X [a,b].
Lemma 2.1. For (t,5) € [a,0*(b)]r X [a, b]r, we have

(=1)"G(t,5) =[G (t 5)| < Ou(0(s) — a)(0*(b) — o (s)),

where

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)
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=) u(t)[2(t + 20(t) — 3(0j+2(b)+a)]}, j>2 (2.8)

teB;

and

aIt(b) +a oIt (b) + a

4, [a, : ]T\{max{t:te[a, : }T}},
B (Uj+1(2b) +a,aj“(b)hu {max{t .t € [a, UH(;) J”L}T}}.

Proof. From (2.3), we obtain for n > 1 and (¢, s) € [a, 0®"(b)]1 X [a, 0®"2(b)|r that

Golt,s)| < 1 {(S—a)< ") ~o(s),  t<s,

(2.9)

s )
= o(b) —a | (0(s) —a) (@™ (b) —o(s)), ofs) <t
1 2n
< T a(g(s) —a)(o™(b) — o(s)). (2.10)

In view of (2.4) and (2.10) |,,—1, we see that (2.7) is true for n = 1. Assume that (2.7)
holds for n = k(> 1). Then for (t,s) € [a,c**"2(b)]r x [a, b]r, it follows from (2.2),
(2.5), (2.6), (2.10)|,—x+1 and (2.7)|,,— that

02k+1 (b)

Ghaol= [ Gt nlIGrs)|ar
o2k +1(p)
< [ o) = ) — o r)(o(s) = ) — o) Ar
o2k +1(p)
~ ) — e o) [ (o) = B o) Ar
0.2k+2(b)
— m@k(a(s) —a)(c?(b) — a(s)){ / (r — a)(o®*2(b) — r)dr
o(t)
£ 3 [ L) = @0 = () - (= ) 0) )i
o(t)
S X [ - @) - ) = 010 - )0 0) - at)lar

Ox(a(s) —a)(o?(b) — a(s)) 2642 (1) _ )3
6<a2'f+2<b> 2 {“’ (b) = a)
£ 57 B0 B) + a) — 2(t + 20(1))

teEAsy

= > pt)2(t +20(t) — 3(0 2k+2(b)+a)]}

t€ Boy,
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Or S 2(0) — o(s
Wb)—a(g(s) —a)(o”(b) (s))

= Oha(o(s) —a)(o?(b) — a(s)).
Thus the inequality (2.7) is true for n = k£ + 1. This concludes the proof. [

Remark 2.2. If T = R, then from Lemma 2.1, we obtain for (¢, s) € [a,b] X [a, D]

Ciraes =leesl < (C5R) B0 ey

1
Lemma 2.3. Let 6 € (O, 5) be a given constant. For (t,s) € |«, Byt X [a, b, we

have
(—1)"Go(t,s) = |Gy(t, )| = ¢u(0)(a(s) — a)(a?(b) — a(s)), (2.12)
where
a=min {t € [a,6”"(b)]r: a+ 0 < t},
B; =max {t € [a,07 (b)]y : t < a¥(b) — &},
0nl) = 5" T[10*®) — ) [T S
and
S = 50— GO+ )+ 3005+ - 2070) 25 + G+ )
+ > p®)?B(e™(b) + a) — 2(t + 20(t))]
teA;\[a,a)r

- ¥ u(t)Q[Q(tJrQa(t))—3(02j(b)+a)]}, =

t€B;\ (85,02 (b)]r
Here the sets A; and B; are defined as in (2.9).

Proof. Forn > 1and (t,s) € [a, Bu]r X [a,0? %(b)]r, from (2.3), we have

Gu(t,s) | t—a a—a a+d—a ) . .
‘Gn(a(s),s) = ) —a= o) —a= o) —a = o) —a IS
and
Colts) | _ o)t _ ") -5,

o (b) —o(s) — o?(b) —o(s)a
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o (b) —o®"(b) +d J . (s
a2(b) — a B 02”(b) —a’ ft>o(s).
Hence, we obtain
5 2n
|G, (t,s)| > m(a(s) —a)(c(b) — a(s)). (2.13)

Noting (2.4) and (2.13)|,,=1, we see that (2.12) is true for n = 1. Now suppose that
(2.12) holds for n = k(> 1). Then using (2.2), (2.5), (2.6), (2.13)|,,=+1 and (2.12)|,,,
we get for (¢, s) € [a, Bu)r ¥ [a, 0],

02k+1 (b)

Ghatsll= [ Gt )lIGL ) 7
0.2k+1(b) (S - .
> / Sy =g ()~ e 0) ()G ) Ar
Prt1 § oheio )
=/ S = (o1~ () o)D) — a) () — o(5)Ar
—5¢k(6) g(s)—a 0'2 — O\S Bk_HO'T—a O'Qk2 — O\Tr T
> (o) =) — o) [ (o) = a0 — o)A
Brt1
> %(ds)—a)(a%b)—a(s»{ [ = - nar
N ; / )" 1) — o (1) — (r — ) (0*F2(B) — r))dr
teAgk\|a,a)
-3 o2(b) = 1) — (o(t) — @) (2 (b) — o (t))dr
t€Bop\ (Br41,028+2(b)]r / }
S (0)

= m(a(s) —a)(0*(b) — 0(5)) Skt
= Ypr(9)(a(s) —a)(o®(b) — a(s)).
Hence, (2.12) is true for n = k£ + 1. This concludes the proof. L]

Remark 2.4. If T = R, then from Lemma 2.3, we obtain for (¢, s) € [a+6,b— 4] X [a, ]

(s —a)(b—s)

b—a ’

1 5 \" s o A4S\
whereqbn(é)—m_1 (b—a) <(b—a) — 60 +b—a) :

(—1)"GL(t,s) = |G (t, s)| > ¥n(0) (2.14)
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1 1
Remark 2.5. From Lemma 2.1 and Lemma 2.3, for § = 1 S (0, 5) , we have

min |G} (t,5)] > ¥, (1/4)G1(0(s), 5) ¥nld) max  |GL(t,s)|

t€]a,Bnlr O0n  tela,o? (b))

> v, max |GL(t,s)],
> g max [Gh(t5)

Vv

where -
) = [Ti=) Sin '
4n Hzﬁz_ll 52i
It is clear that s9; > S;41, 1 <@ < n — 1. Thus, we have 0 < v, < 1.

Finally in this section, we state Krasnosel’skii’s fixed point theorem in a cone [34,
35].

Theorem 2.6. Let B = (B, || - ||) be a Banach space, and let P C B be a cone in B.
Suppose that €}y and )y are open subsets of B with 0 € 1y and (1 C (. Suppose
further that T : P N (Q \ 1) — P is a continuous and compact operator such that
either

i||Tul|| < ||lu|l forue PNoQ,||Tu| > ||ul| forw e PN O, or
il |Tul| > ||u|| foruw e PNOQy, ||Tul| < ||ul| foru e PN oOQy
holds. Then T has a fixed point in P N (Qy \ ).

3 Existence of Positive Solutions

To discuss (1.1), we first consider the initial value problem

a2(t) = y(t), t€a, 0™ B 3.1)
z(a) =0 (3.2)
whose solution is
t
() = / y(s)As, t € [a, 0™ (b)), (3.3)

Taking into account (3.1) and (3.3), the complementary Lidstone boundary value prob-
lem (1.1) reduces to the Lidstone boundary value problem

o(t)
(—l)nyA(Qn) (t) + q(t)f<t,/ y(s)As) =0, t € |a,b|r, (3.4)
yA (@) = 2 (0™ () =0, i=0,1,...,n— L.
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If (3.4) has a solution y*, then from (3.3),

x*(t) = /t y*(s)As (3.5)

is a solution of (1.1). Hence, the existence of a solution of the complementary Lidstone
boundary value problem (1.1) follows from the existence of a solution of the Lidstone
boundary value problem (3.4). It is clear from (3.5) that

max |z*(t)| < (6¥(b) —a) max |y*(t)],

tela,o2nt1(b)|r t€fa,o2™(b)]T

and moreover if y* is positive, so also is z*.
Let the Banach space B = C[a, c*"(b)]r be equipped with the norm

= max t
loll = max Ju()

for y € B. We now define a mapping T : C[a, 0*"(b)]r — Cla, o> (b)]1 by

ryw = [ curaie uts)s (s [ " V(r)B7 ) s
S ey ( [ ymm) As

where G (¢, s) is the Green’s function given in (2.2). A fixed point * of the operator T

(3.6)

t
is clearly a solution of the boundary value problem (3.4), so z*(t) = / y*(s)Asis a
solution of (1.1). Let ‘

K={yeB:y(t)>0,t€ [a,0™0b)r}.
We now list some conditions which will be used in some results in this paper:

(C1) ¢ € C(([a,a(b)]r),[0,00)) is not identically zero on any subinterval of [a, o(b)]r,

and ¢
0< / G1(o(s),s)q(s)As < oo,
where v = max {t €l ér:t< @Tj%} and £ = min{o(b), B}

(C2) fis continuous on [a, o (b)|]r X R and nondecreasing in the second argument with
f(t,u) > 0for (t,u) € [a,0(b)|r x K.

Our first result is an existence criterion for a solution (need not be positive).
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Theorem 3.1. Let (Cy) hold and let f be continuous. If M > 0 satisfies 0, AQsq < M,
where () > 0 satisfies

o(t)
Q> max |f(t, / y(s)As)|, for t € a, o)),
lyll<M a
A= 1), 3.7
st 1) o7

and the number s, is defined in (2.8)|;—o, then CLBVP (1.1) has a solution z* €
Cla,o® (b)|r such that ~ max  |z*(t)| < (6**(b) — a)M.

t€la,o?n 1 (b)]r
Proof. Let K1 = {y € B : |ly|]| < M}. We will apply Schauder’s fixed point theo-
rem. The solutions of problem (3.4) are the fixed points of the operator 7. A standard
argument guarantees that 7' : iy — B is continuous. Next we show T'(K;) C K. For

y € K1, we obtain
o(b) o(s)
Ty(t)] = / (=1)"GL(t, 5)q(s) f (s/ y(TMT) As

o(b) o(s)
< / |G (t, 5)la(s) f(s,/ y(T)AT> As
o(b)
< 0,AQ (o(s) = a)(0*(b) — o (s))As
< enAQSO
< M

for all t € [a,0**(b)]r. This implies that || Ty|| < M. A standard argument, via the
Arzela—Ascoli theorem, guarantees that 7' : K; — K is a compact operator. Hence T’
has a fixed point y* € K; by Schauder’s fixed point theorem, and note 3™ is a solution

t
of (3.4). From (3.5), it is easy to see that (1.1) has a solution z*(t) = / y*(s)As with

1
e )] < |yl < M. =
(02(b) — a) te[a,gﬁ}%(b)h 2" ()] < [ly*ll <

Corollary 3.2. If f is continuous and bounded on [a, o (b)|t X R, then the CLBVP (1.1)
has a solution.

Next let

P = {y €B: min y()>0and min y(t) > ’ynHyH} C K. (3.8)

t€a,0?™(b))r t€[a,Bnlr

It is easy to check that P is a cone of nonnegative functions in C[a,o*"(b)]r. Now
assume (C;) and (Cs) hold. Next we will apply Theorem 2.6. First we show 7' : P — P
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(see (3.6) for the definition of T"). Now (C;) and (Cy), y € P implies that T'y(¢) > 0 on
[a, c*(b)]r and

win, 7u(t) = | i (—1>"G;<t,s>q<s>f(s, /:(s)w)Ar)As

tE[Oé,,Bn]']r te[a7BH]T

o(b) o(s)
[ max an<t,s>|q<s>f(s, / ymm)As.

t€la,02n(b)]T

AV

It follows that
min  Ty(t) > v.||Ty||.

te[avﬁn]'ﬂ‘

Thus T'y € P which means 7'(P) C P. A standard argument, via the Arzela—Ascoli
theorem, guarantees that 7" : P — P is continuous and completely continuous.

Theorem 3.3. Let (Cy) and (Cs) hold. Also assume

) tim L5Y) g g LY

y—0t Yy Y—+00 Yy

= o0, fort € [a,o(b)]r.

Then the CLBVP (1.1) has at least one positive solution.

Proof. We will apply Theorem 2.6 with the cone P defined in (3.8). Since

ACY)

m ——= =0,
y—0t Yy
there exists an r; > 0 such that
fty) <ny, 0<y<r, a<t<ob), (3.9)

1
0,A(c(b) — a)so

where 7 = and the numbers A and s are defined in (3.7) and (2.8)| =05

respectively. Let 2 = {y € B: |yl < #} For y € P N 0%y, we have
o(b) —a

20 20 .
/a y(r)Ar < / IylAT <~ (o) —a) =71 (3.10)

Using Lemma 2.1, (3.10) and (3.9), we find for ¢ € [a, 0*"(b)]r that
o(b) a(s)
) = [ raesuer(s [ nar)as
‘ o(b) oa(b)
<" G ( [ vmar)as
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o(b)
< 77/ 0,G1(0(5), $)q(s) As

< Anf, rl/ Gi(o

< OuAnriso = ——— = [lyl,
(U(b) —a)
and so
ITy| < ||yl forall y € PNoy.
t _
Since lim M = 00, there exists an R > 0 such that
y—>00 Y

ft,y) >y, y>R, a<t<a(b),

-1

where ;1 — ((V — @)t (1/4) / 5 Gl(a(s),s)q(s)As> Let

R, = max { 0<b2)ﬁ_ a (v —Roz)%}

and 2, = {y € B : ||y|| < Ri}. Fory € P N 0%y, we have

/ “yAr> [ min yAT > - a)ll = (v — o)

tE[a,ﬁnh‘

Using Lemma 2.3, (Cy), (3.12) and (3.13) we find for ¢y € [«, 3,7 that

Tt = | " Gt (s >f(s / " <>AT)AS

> / Un(1/4)Gr(0 (
z / f@/y
z o

Ual1/4) / SERTe

v

v

v

Ry = lyll,

(AT )As
A7)
)As

13
Ga(1/4) / Gi(0(s), s)a(s)ulv — a)yuRiAs
13
a1/ (v — o)y Ry / G1(0(s), s)q(s)As

165

(3.11)

(3.12)

(3.13)
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and so

[Tyl = |lyll forall y € PN oQs.

(3.14)

Consequently, Theorem 2.6 guarantees that T has a fixed point y € PN (Q\ ;). From

t
(3.3), note a positive solution of (1.1) is z(t) = / y(s)As.

Theorem 3.4. Let (Cy) and (Cs) hold. Also assume

o tim FEY) o fE)

y—0t Yy Y—>00 Y

=0, fort € [a,o(b)]r.
Then the CLBVP (1.1) has at least one positive solution.

t
Proof. Since lim M
y—=0t Y

= 00, there exists an 9 > 0 such that

f(tay)zﬁya 0<y§7“2, aStSU(b)a

where 11 > p; here p is given in the proof of Theorem 3.3. Let

)

Tyt = [ J(b)(—l)"Gi(to,S)Q(S)f(s, / " ymm) As

T
91—{yeB:Hyu< k

v

For y € P N 0%y, we have for ty € [«, 5,]7 that

> | { wn(1/4)6’1(0(8),S)q(S)f<8, / U(S)ymm) As
> bal1/1) [ "G (o(s), a()f s / ”ymm)As

v

13
wn(1/4)fynr2/7/ G1(o(s),s)q(s)As

T2

> = llyll,
V—«o

t
and so | Ty|| > |yl forall y € P1OQ. Since Tim 4 -¥)
Yy—0o0 y
that

ft,y) <my, y>7s, a<t<ob),

O

= 0, there exists an 75 such

(3.15)
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where j = (0, A(o(b) — a)so) .
Case 1. Suppose that f is bounded. Then, there exists some N > 0 such that
flt,y) <N, tela,o(b), yel0,00). (3.16)
Let r3 = max{ry + 1, N0,Aso} and Qs = {y € B : ||y|| < r3}. Fory € P N 0y,
using Lemma 2.1, (C) and (3.16), we get

i) - [ e s)q(s)f(s, / " ymm)As

IN

a(b)
N@nA/ Gi(o(s), s)As
< NO,Aso < r3 =yl

Hence, ||Ty|| < ||ly|| forally € P N 0.
Case 2. Suppose that f is unbounded. In this case let

g(r) :=max{f(t,y) : t € [a,0(b)],0 <y <r}

27”2 7“_2

such that lim g(r) = co. We choose r3 > max )
r—o0 v—a (v—a)y,

g(r)andlet Qs = {y € B : ||y|| < r3}. Fory € P N 0, we have using Lemma 2.1,
(C2) and (3.15) that

} such that g(r3) >

o = [Cera uts)s (s " V(1O )
< w, [ " Ga(o(s).9a(s) (/ " rar)as

o(b)
. Allyll((5) — a) / Gi(0(s), 5)As
< WuAo(d) — d)sollyl = Iyl

and so [|Ty|| < [ly|| forall y € P N 9. It follows from Theorem 2.6 that 7" has a
fixed point y € P N (€2 \ ;). From (3.3), note a positive solution of (1.1) is z(t) =

t
/ y(s)As. O
Theorem 3.5. Let (Cy) and (Cy) hold. Also assume

f(t.y) G

(C5) lim —=* =00, lim —-* = o0, fort € [a,o(b)]r.
y—07t Yy Yy—00 Yy

IN

(Cs) There exists constant py such that f(t,y) < Tpy, for y € [0,(c(b) — a)pi),

where I’ = 0 Asy’
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Then the LBVP (3.4) has at least two positive solutions vy, and vy such that

0 <lyall < pr <llgell

t
and the CLBVP (1.1) at least two positive solutions x1 and xo with z1(t) = / y1(s)As

ana’xQ(t)—/ ya(s)As.
f(ty)

Proof. Since lim —— = oo there exists p, € (0, p1) such that
y—0t Yy

flt,y) >y for 0 <y <p., a<t<o(b),

where (1 > p; here pis given in the proof of Theorem 3.3. Choose

i)
V—«

and set Q; = {y € B : ||y|| < px}. Fory € P N0y, we have

/ayy(T)AT < /V max  y(H)AT < (v — a)px < p..

a t€la,o?m(b)lr

Using Lemma 2.3, (Cs), (3.17) and (3.18), we find for ¢y € [«, 8,]r that
rue) = [ e e (s [ v )ss
= 5 wn(l/‘l)Gl(U(SLS)Q(S)f<s, / U(s)ymm) As
> wat/2) [ G901 (s [ uriar)as
13

14

> /1) [ Gt s ([ trar)as

3
> G =y [ Galols)slalo)as
> P = lyll,
and so
ITy|| > ||y|| forall y € PN osy.
t
Since lim J(ty) = 00, there exists p* > p; such that
y—o0 Y

f(t,y) > ny for y > p*,

(3.17)

(3.18)

(3.19)

(3.20)
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where 15 > p; here p is given in the proof of Theorem 3.3. Choose

7> maxy ———— p,
(V - a)'yn

and set Qs = {y € B : ||y|| < p*}. Forany y € P N 09y, we get

/ YT [ min yOAT 2 (- ahalyl = (- @) > g G2D
o o Q,On T

Using Lemma 2.1, (Cs), (3.20) and (3.21), for ¢y € |« @JT, we have

ryw) = [ Carei (s [ (r)A7)as
> [ /G0, uls f(/ ; <>AT)A8
> a1/1) [ o) nt)s (s, [ omar)as
- ( [ o)

> %(1/4)/1/5@1(0 1( y(r T)As

> G0 @ [ i), s
> 7 = [yl
which yields
Tyl > [lyl| forall y e P na,. (3.22)

Let Q3 = {y € B : ||y|| < p1}. Fory € P N 093 from (Cg), we obtain

o = [Cera uts)s (s " V(IO ) s

< / " o G (o(5), s)a(s) f(s, / " y(T)AT) As

o(b)
Gn/ G1(o(s),s)q(s)I'p1As

IA

IN

a(b)
GnAFpl/ G1(o(s),s)As
< enASOFpl =P = HyH7

which yields

ITy| < ||yl forall y € PN oQs. (3.23)
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Hence, since p, < p; < p” and from Q 19), (3.22) and (3.23) it follows fgm Theorem
2.6 that T has a fixed point y; in PN (Q23\€2;) and a fixed point y in P N (25\23). Note
both are positive solutions of the LBVP (3.4) satisfying

0 <ol < pr < lgell.

t
From (3.3), two positive solutions of (1.1) are x; and x5 such that x;(t) = / y1(s)As

t
and x(t) :/ y2(s)As. O
Theorem 3.6. Let (Cy) and (Cs) hold. Also assume

t t
(C7) lim G =0, lim J(t.y) =0, fort € |a,0(b)|r.

y—0+ Yy Y—00 Y
(Cs) There exists constant py such that f(t,y) > Ops, y € [(V — @) ynp2, (v — a)p2),
¢ -1
where © = (10”(1/4) / Gi(o(s), s)q(s)As) .
Then the LBVP (3.4) has at least two positive solutions vy, and vy such that

0 <yl < p2 <llgell-

t
and the CLBVP (1.1) at least two positive solutions x1 and x4 with x1(t) = / y1(s)As

and xs(t) = /: ya(s)As.

Example 3.7. Let T = Z. We consider the following complementary Lidstone bound-
ary value problem on T:

227 ) + f(t,27(1) =0, t€[0,7]r,

ZL’(()) - O, ;L'A(O) = {L’A(o'4(7)) _ 0, $A<3)(O) _ :I/‘A(E})(O_Q(,?)) —0 (324)

Note (3.24) is a particular case of (1.1) with ¢(t) = 1 and a = 0,0 = 7,n = 2. Since
T=2 0(t)=t+1,00(t) =t+jand 2>(t) = Az(t), 227 (t) = Adz(t). We notice
that our complementary Lidstone boundary value problem is the following difference
complementary Lidstone boundary value problem:

Ax(t)+ ft,x(t+1))=0, t=0,1,...,7
2(0) =0, Ax(0) = Axz(11) =0, A%z(0) = A%z(9) = 0.

The Green’s function G5(t, s) is

a3(7)
Gl s) = / Golt, 1) GL(r, )5 = 3 Galt, 1)GL (1, 5),
0
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where

o(s)(0*(7) =), o(s) <t

Galt,s) = —» {t(a (7) — o(s)). t <5,
=1 t(10 —s), t<s,
i

and

Gl(t,s) = Gi(t,s) = {
t
(

In Lemma 2.1, we find 6, = — 2 where

s = {4 T P D) - 2e-+ 200)

tEAs

=) u(t)’[2(t + 20(t) — 3(04(7))]}

teEB>y
1 4 10

= 2113 29 — 6t — 6t — 29 v = 220
e -a-3 0o} -0

with Ay = {0,1,2,3,4} and By = {5,...,10}. In Lemma 2.3, we note o« = 1, 35 = 10,
¢ =8, v =4 and we have

4 9
1
S, = 6{1269+Z?9—6t—26t—29} — 210

t=1 t=5

and
So 210

11x9 27 16 x 220

Po(8) = 62
For condition (C,), we note

8

3 8
0< / Gi(o(s),s)q(s)As = /4 o(5)(0*(7) — o(s))As = Z(S +1)(8 — s) = 60.

s=4

(i) Consider the complementary Lidstone dynamic equation (3.24) with the function
f(t,x) = 2*(t + x). It is easy to see that f satisfies condition (Cs). Since

i TG v+ Y)
y—0t Yy y—0t Yy

=0,
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t 2(¢
im LY g Y
for t € [0, 8]y, condition (C3) is fulfilled. Therefore, according to Theorem 3.3 the
complementary Lidstone BVP (3.24) has at least one positive solution.
(ii) Consider the complementary Lidstone dynamic equation (3.24) with the function

flt,r) = Vx+ 2. It is easy to see that f satisfies condition (C,). Also we obtain

lim M = lim \/@+t2 =00
y—0t Yy y—0t Yy ’
t2
lim M: lim \/y—jL:O7
Y—00 y Yy—r0o0 y

for t € [0, 8]r, so condition (Cy) is fulfilled. From Theorem 3.4, the complementary
Lidstone BVP (3.24) has at least one positive solution.

(iii) Consider the complementary Lidstone dynamic equation (3.24) with the func-
tion

53
<1052l *2h
flta) = 4 322105201 +0)
VT <1<
1052’ Osz<

The function f is continuous on [0, 8] x R and nondecreasing in the second argument
with f(t,xz) > 0 for (¢,x) € [0,8]r x K. Hence condition (Cy) is fulfilled. Also we

have
y—0t Yy y—0t 1052y
t 3
i TEY) 5y _

Wy he32x 105201+ y)y
for t € [0, 8]r. Thus (Cs) is satisfied. Furthermore, we note A = 1 and

s = 1{<02<7>>3+Zu@)z[za(a?(?))—2<t+2o<t>>]

6
teAo

_ Z w(t)?[2(t + 20(t)) — 3(01(7))]}

teBy

3 9
1
= 2093 § 23—6t—§ 6t — 23 % =120
6{ +t:0 t=4 } ,

1 99

dI' = = .
an Gyhse 210 x 120
then we have

1
If we choose p; = 5 and noting f is nondecreasing,

f(t,y):% <1, for0 <y <4, te0,8
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so condition (Cg) is satisfied. Thus all the conditions of Theorem 3.5 are satisfied so the
CLBVP (3.24) has at least two positive solutions.

(iv) Consider the complementary Lidstone dynamic equation (3.24) with the func-
tion

ver—1+7 x2>1;

t,x) =< 1422

f(t,x) x’ 0<z<l.
1+2

The function f is continuous on [0, 8] x R and nondecreasing in the second argument
with f(t,z) > 0 for (t,x) € [0,8]r x K. Hence condition (Cy) is fulfilled. Also we

have )
t 14
lim fty) _ lm —7

— =0,
y—0t Y y—ot (14+19)y

. fty) Vy—1+7
lim —= = lim — =0,
y—oo Y yY—00 Y

for t € [0,8]r. Thus (Cy) is satisfied. Now if we calculate the number © in Theorem

1 1
m = 35 If we choose p; = 3 and noting f is

nondecreasing, then we have

3.6, then we obtain © =

1442 11
= > — x —, for
1+y = 350 3 16 x 22

f(t,y) <y<1l te[08r

so condition (Cg) is satisfied. Thus all the conditions of Theorem 3.6 are satisfied so the
CLBVP has at least two positive solutions.
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