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Abstract

In this paper, we study the so-called optimal derivative for a specific class of
nonlinear functions. Results on the existence, uniqueness, and convergence of the
approximation are presented.
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1 Introduction
The study of differential equations is a mathematical field that has historically been
the subject of much research, however, continues to remain relevant, by the fact that it
is of particular interest in such disciplines as engineering, physical sciences and more
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recently biology and electronics, in which many models lead to equations of the same
type. Most of these equations are generally nonlinear in nature. The term “nonlinear”
gathers extremely diverse systems with little in common in their behavior. It follows
that there is not, so far, a theory of nonlinear equations. A large class of these nonlinear
problems is modelled by nonlinear ordinary differential equations.

Consider the nonregular case. Imagine the case when the only equilibrium point is
nonregular. In this case, we cannot derive the nonlinear function and consequently we
cannot study the linearized equation. A natural question arises then: Is it possible to as-
sociate another linear equation to the nonlinear equation which has the same asymptotic
behavior?

The idea proposed by Benouaz and Arino is based on the method of approximation.
In [3, 4, 7–9], the authors introduced the optimal derivative, which is in fact a global
approximation as opposed to the nonlinear perturbation of a linear equation, having a
distinguished behavior with respect to the classical linear approximation in the neigh-
borhood of the stationary point. The approach used is the least square approximation.
Benouaz and Bohner have developed the optimal derivative, in particular, the relation-
ship between the optimal derivative and the classical linearization [10] and the relation-
ship between the optimal derivative and asymptotic stability [11] (for applications see
also [1, 12]).

The aim of this paper is to make some theoretical progress and investigate the valid-
ity of method. In this paper, we study a specific class of nonlinear functions. We present
results on the existence, uniqueness, and convergence of the approximation. Related
versions of these results are contained in the PhD thesis of the first author, see [2,5]. At
first, we present a brief overview of the optimal derivative.

2 Optimal Derivative Review

2.1 The Procedure
Consider a nonlinear ordinary differential problem of the form

dx

dt
= F (x), x(0) = x0, (2.1)

where

• x = (x1, . . . , xn) is the unknown function,

• F = (f1, . . . , fn) is a given function on an open subset Ω ⊂ Rn,

with the assumptions

(H1) F (0) = 0,
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(H2) the spectrum σ(DF (x)) is contained in the set {z : Rez < 0} for every x 6= 0, in
a neighborhood of 0 for which DF (x) exists,

(H3) F is γ-Lipschitz continuous.

Consider x0 ∈ Rn and the solution x of the nonlinear equation starting at x0. With all
linear A ∈ L(Rn), we associate the solution y of the problem

dy

dt
= Ay(t), y(0) = y0,

and we try to minimize the functional

G(A) =

∫ ∞
0

‖F (y(t))− Ay(t)‖2 dt (2.2)

along a solution y. We obtain

Ã =

(∫ ∞
0

F (x(t))[x(t)]Tdt

)(∫ ∞
0

x(t)[x(t)]Tdt

)−1
. (2.3)

Precisely, the procedure is defined by the following scheme: Given x0, we choose a first
linear map. For example, if F is differentiable in x0, then we can take A0 = DF (x0)
or the derivative value in a point in the vicinity of x0. This is always possible if F is
locally Lipschitz. If A0 is an asymptotically stable map, then the solution starting from
x0 of the problem

dy

dt
= A0y(t), y(0) = y0

tends to 0 exponentially. We can evaluate G(A) using (2.2) and we minimize G for
all matrices A. If F is linear, then the minimum is reached for the value A = F (and
we have A0 = F ). Generally, we can always minimize G, and the matrix which gives
the minimum is unique. We call this matrix A1 and replace A0 by A1, we replace y by
the solution of the linearized equation associated to A1, and we continue. The optimal
derivative Ã is given by (2.3) and is the limit of the sequence build as such (for details
see [3, 6–8]).

2.2 Properties of the Procedure
We now consider situations where the procedure converges.

Influence of the choice of the initial condition

Note that if we change x(t) to z, then the relation (2.3) can be written as

Ã

∮ x0

0

zdzT =

∮ x0

0

F (z)dzT ,
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where
∮ x0

0

is the curvilinear integral along the orbit γ(x0) = {etB : t ≥ 0} of x0. We

obtain

Ã =

(∮ x0

0

F (z)dzT
)(∮ x0

0

zdzT
)−1

.

It is clear that the optimal derivative depends on the initial condition x0.

Case when F is linear

If F is linear with σ(F ) inside the left-hand side of the complex plane, then the proce-
dure gives F at the first iteration. Indeed, in this case, (2.3) reads

AΓ(x) = FΓ(x)

and it is clear that A = F is a solution. It is unique if Γ(x) is invertible. Therefore, the
optimal approximation of a linear system is the system itself.

Case when F is the sum of a linear and nonlinear term

Consider the more general system of nonlinear equations with a nonlinearity of the form

F (x) = Mx+ F̃ (x), x(0) = x0,

where M is linear. The computation of the matrix A1 gives

A1 =

[∫ ∞
0

F (x(t))[x(t)]Tdt

]
[Γ(x)]−1

=

(
MΓ(x) +

∫ ∞
0

F̃ (x(t))[x(t)]Tdt

)
[Γ(x)]−1

= M +

(∫ ∞
0

F̃ (x(t))[x(t)]Tdt

)
[Γ(x)]−1 .

Hence, A1 = M + Ã1 with

Ã1 =

(∫ ∞
0

F̃ (x(t))[x(t)]Tdt

)
[Γ(x)]−1 .

Then, for all j we have Aj = M + Ãj with

Ãj =

(∫ ∞
0

F̃ (xj(t))[xj(t)]
Tdt

)
[Γ(xj)]

−1 .

If, in particular, some components of F are linear, then the corresponding components
of F̃ are zero, and the corresponding components of Aj are those of F . If fk is linear,
then the kth row of the matrix Aj is equal to fk.
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2.3 Calculation of Ã
Let us suppose that the sequence Aj given by

Aj =

(∫ ∞
0

F
(
etAj−1x0

) [
etAj−1x0

]T
dt

)(∫ ∞
0

etAj−1x0
[
etAj−1x0

]T
dt

)−1
converges to the optimal matrix and that the derivative DF (0) of F in 0 exists. In this
case, we can write

F (x) = DF (0)x+ o(|x|). (2.4)

Replacing the relation (2.4) and using the properties of the optimal derivative from [7,8],
we find

Ã =

[∫ ∞
0

[DF (0)x(t) + o(|x(t)|)] [x(t)]Tdt

] [∫ ∞
0

x(t)[x(t)]Tdt

]−1
= DF (0)

[∫ ∞
0

x(t)[x(t)]Tdt

] [∫ ∞
0

x(t)[x(t)]Tdt

]−1
+

[∫ ∞
0

o(|x(t)|)[x(t)]Tdt

] [∫ ∞
0

x(t)[x(t)]Tdt

]−1
= DF (0) +

[∫ ∞
0

o(|x(t)|)[x(t)]Tdt

] [∫ ∞
0

x(t)[x(t)]Tdt

]−1
,

where [∫ ∞
0

[o(|x(t)|)][x(t)]Tdt

] [∫ ∞
0

[x(t)][x(t)]Tdt

]−1
= o(1),

i.e., a quantity which tends to 0 when x0 → 0, by supposing that |x(t)| remains of the
order of x0.

Remark 2.1. It should be noted that the nonlinear system is written after application of
the optimal linearization as

Ã = M + r(x0), x0 = x(0),

where M = DF (0) and

r(x0) =

[∫ ∞
0

G
(
etAx0

) [
etAx0

]T
dt

] [∫ ∞
0

etAx0
[
etAx0

]T
dt

]−1
.

The first term is the linearization. The second term, which is actually the optimal lin-
earization of the nonlinear function G, turns out to be dependent on the initial value x0.
It is as if we had perturbed DF (0), writing the optimal matrix in the form

Ã = DF (0) + o (‖x0‖) .
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3 A Special Class of Nonlinear Functions

3.1 Theoretical Framework
We fix x0 6= 0 and define in Mn(R) the map A→ Φ(A) such that

Φ(A) =

[∫ ∞
0

F
(
etAx0

) [
etAx0

]T
dt

]
[Γ(A)]−1 (3.1)

with
Γ(A) =

∫ ∞
0

(
etAx0

) [
etAx0

]T
dt.

Now we build the sequence of approximations{
Aj = Φ (Aj−1)

A0 = DF (x0),
(3.2)

where x0 is an arbitrary point taken in a neighborhood of 0 and such that F is differ-
entiable at this point. The limit of the sequence Aj , if it exists, is called the fixed point
optimal derivative. From this, we can obtain a linear optimal equation. In fact, it is a
fixed-point problem that we are going to solve. Indeed, we have in case of convergence
of the sequence Aj the existence and uniqueness if we can show that Φ is Lipschitz
continuous with Lipschitz constant less than 1.

3.2 Problem Setting
Define

4 =



δ1 0 0 · · 0 0
0 δ2 0 · · · 0
· 0 · 0 · · ·
· 0 0 · 0 · ·
· 0 0 0 · 0 ·
0 0 0 0 0 δn−1 0
0 0 · · · 0 δn


, 0 < δ1 < δ2 < . . . < δn. (3.3)

We consider a nonlinear ordinary differential problem
dx

dt
= F (x)

x(0) = x0,
(3.4)

where
F (x) = −4x+G(x), x ∈ Rn.
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F is defined in an open set Ω with values in Rn. We assume that F (0) = 0, F is con-
tinuous, and F is Lipschitz. x0 is chosen with nonzero components. We are interested
in the existence, the uniqueness, and the convergence of the optimal derivative obtained
by minimization of the “lesser square”, associated to the equation (3.4) of the form

dx

dt
= Ãx

x(0) = x0.
(3.5)

Ã is the limit, if it exists, of the sequence defined by (3.2).

3.3 Recursive Relation
By using the expression of F , the recursive relation between Aj−1 and Aj is

Aj = −4
(∫ ∞

0

etAj−1x0
[
etAj−1x0

]T
dt

)
[Γ (Aj−1)]

−1

+

(∫ ∞
0

G
(
etAj−1x0

) [
etAj−1x0

]T
dt

)
[Γ (Aj−1)]

−1

= −4+

(∫ ∞
0

G
(
etAj−1x0

) [
etAj−1x0

]T
dt

)
[Γ (Aj−1)]

−1 ,

where Γ is invertible. If we set

ϕ(A) =

(∫ ∞
0

[
G
(
etAx0

)] [
etAx0

]T
dt

)
[Γ(A)]−1 (3.6)

and
Φ(A) = −4+ ϕ(A), (3.7)

then we obtain the problem {
Aj = Φ (Aj−1)

A0 ∈ B(−4, ρ),
(3.8)

where B(−4, ρ) is the ball with center −4 and radius ρ > 0 in the space of matrices
Mn(R). The initial matrix is

A0 = −4+DG(x0). (3.9)

4 Existence of the Optimal Derivative
Lemma 4.1. Assume (3.3). Let γ > 0 and suppose G is continuous and satisfies

‖G(x)‖ ≤ γ ‖x‖ for all x ∈ Rn. (4.1)
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If B ∈ B(−4, ρ) for some ρ ∈ (0, δ1/2), then there exists a constant m = m(x0,4)
such that ϕ defined by (3.6) satisfies

‖ϕ(B)‖ ≤ K, where K =
γ
(
δn−δ1

2
+ 2ρ

)2 ‖x0‖2
2m(δ1 − 2ρ)ρ2

. (4.2)

Proof. From (4.1), we have

‖ϕ(B)‖ ≤ γ

(∫ ∞
0

∥∥etBx0∥∥2 dt

)∥∥[Γ(B)]−1
∥∥ . (4.3)

We first estimate
∥∥[Γ(B)]−1

∥∥. To do this, we compute

vTΓ(B)v =

∫ ∞
0

(
vT etBx0

)2
dt, (4.4)

and so vTΓ(B)v is the integral of a square function. So, vTΓ(B)v is nonzero if the
function is nonzero. We take B = −4, and the square of the function which we
compute is

ψ(v(t)) =
n∑
j=1

vjx0,j e
−δjt,

where 0 < δ1 < δ2 < . . . < δn and ψ(v(t)) is equivalent, when t→∞, to a term which
corresponds to the smallest integer j such that

vjx0,j 6= 0, which means vj 6= 0,

so we have vTΓ(B)v > 0 for all v 6= 0. Hence the quadratic form associated with Γ(B)
is positive definite, and so for all (x0,4), there exists a constant m = m(x0,4) > 0
such that

vTΓ(B)v ≥ m ‖v‖2 . (4.5)

Thus
‖Γ(B)‖ ≥ m. (4.6)

With λmin = min {λ : λ ∈ σ (Γ(B))}, (4.6) yields

λmin ≥ m

which implies for all λ ∈ σ
(
[Γ(B)]−1

)
, λ ≤ λ−1min and

λ ≤ 1

m
. (4.7)

Thus
vT [Γ(B)]−1 v ≤ 1

m
‖v‖2 . (4.8)
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We deduce that the positive definite symmetric matrix [Γ(B)]−1 satisfies∥∥[Γ(B)]−1
∥∥ ≤ 1

m
. (4.9)

Now we estimate the term
∥∥etB∥∥. We define C to be the circle in the left-hand side of

the complex plane with

center at
(
−δ1 + δn

2
, 0

)
and radius

δn − δ1
2

+ 2ρ. (4.10)

Then C encloses the numbers −δi, 1 ≤ i ≤ n, and also the eigenvalues of B for

‖B +4‖ < ρ <
δ1
2
.

Moreover,
δC := dist

(
C, {−δi}1≤i≤n

)
= 2ρ.

Then by Cauchy’s integral formula,

etB =
1

2πi

∫
C

etz(zI −B)−1dz, (4.11)

and if we put η = δ1 − 2ρ, then∥∥etB∥∥ ≤ 1

2π

∫
C

∣∣etz∣∣ ∥∥(zI −B)−1
∥∥ |dz| ≤ 1

2π

∫
C

e−tη
∥∥(zI −B)−1

∥∥ |dz| .
Let z ∈ C. Note that

(zI −B)−1 =
(
I − (zI +4)−1(B +4)

)−1
(zI +4)−1 (4.12)

holds. We calculate∥∥(zI +4)−1
∥∥ = max

1≤i≤n

1

|z + δi|
=

1

min1≤i≤n |z + δi|

=
1

dist (z, {−δi}1≤i≤n)
≤ 1

δC
=

1

2ρ
.

Since∥∥(zI +4)−1(B +4)
∥∥ ≤ ∥∥(zI +4)−1

∥∥ · ‖B +4‖ ≤ ‖B +4‖
2ρ

<
1

2
< 1,

we have (see, e.g., [14, exercise following Corollary 5.6.16])∥∥∥(I − (zI +4)−1(B +4)
)−1∥∥∥ ≤ 1

1− ‖(zI +4)−1(B +4)‖

≤ 1

1− ‖(zI +4)−1‖ · ‖B +4‖
.

Using this in (4.12), we find∥∥(zI −B)−1
∥∥ ≤ ∥∥∥(I − (zI +4)−1(B +4)

)−1∥∥∥ · ∥∥(zI +4)−1
∥∥
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≤ ‖(zI +4)−1‖
1− ‖(zI +4)−1‖ · ‖B +4‖

=
1

1
‖(zI+4)−1‖ − ‖B +4‖

≤ 1

2ρ− ‖B +4‖
<

1

2ρ− ρ
=

1

ρ
. (4.13)

Thus ∥∥etB∥∥ ≤ ke−tη

ρ
, where k =

1

2π

∫
C

|dz| = δn − δ1
2

+ 2ρ. (4.14)

Putting (4.9) and (4.14) in (4.3), we obtain

‖ϕ(B)‖ ≤ γk2 ‖x0‖2

mρ2

∫ ∞
0

e−2tηdt =
γk2 ‖x0‖2

2mηρ2

which shows (4.2) and completes the proof.

Proposition 4.2. Under the assumptions of Lemma 4.1, there exists ρ > 0 such that the
equation

B = −4+ ϕ(B) (4.15)

has at least one solution in B(−4, ρ).

Proof. If we put K < ρ, where K is defined in (4.2), then we have ‖ϕ(B)‖ < ρ. Then
the map Φ defined by (3.7) satisfies

Φ : B(−4, ρ)→ B(−4, ρ).

This map is continuous. The continuity of Φ is a consequence of the continuity of each
of maps

B → [Γ(B)]−1 and B →
∫ ∞
0

G(x(t))
[
etBx0

]T
dt.

Indeed, for the first map, it suffices to show the continuity of the map B → Γ(B), since
we know that Γ(B) is uniformly invertible in a neighborhood of B = 0. By noting that

Γ(B) =

∫ ∞
0

x(t)[x(t)]Tdt =

∫ τ

0

x(t)[x(t)]Tdt+

∫ ∞
τ

x(t)[x(t)]Tdt,

we see that the integral from 0 to τ depends continuously on B, and the integral from τ
to∞ is uniformly small when τ is big enough. In the same manner, for the second map,
by noting that

ψ(B) =

∫ ∞
0

G(x(t))[x(t)]Tdt =

∫ τ

0

G(x(t))[x(t)]Tdt+

∫ ∞
τ

G(x(t))[x(t)]Tdt,
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we see that the integral from 0 to τ depends continuously on B, and the integral from τ
to∞ is uniformly small when τ is big enough. So we may write

Γ(B) = lim
τ→∞

∫ τ

0

etBx0
[
etBx0

]T
dt,

ψ(B) = lim
τ→∞

∫ τ

0

G(etBx0)
[
etBx0

]T
dt

uniformly, i.e., Γ(B) and ϕ(B) are uniform limits of continuous functions and are so
continuous. Thus Φ applies the closed ball to itself and is continuous. From Brouwer’s
fixed point theorem [13], we conclude the existence of a fixed point of Φ.

5 Uniqueness of the Optimal Derivative
Lemma 5.1. Assume (3.3). Let γ > 0 and suppose G satisfies G(0) = 0 and

‖G(x1)−G(x2)‖ ≤ γ ‖x1 − x2‖ for all x1, x2 ∈ Rn. (5.1)

If B1, B2 ∈ B(−4, ρ) for some ρ ∈ (0, δ1/2), then there exists m = m(x0,4) such
that ϕ defined by (3.6) satisfies

‖ϕ(B2)− ϕ(B1)‖ ≤ K ‖B2 −B1‖ ,

where K =
γ
(
δn−δ1

2
+ 2ρ

)2 ‖x0‖2
m(δ1 − 2ρ)ρ3

(
1 +

(
δn−δ1

2
+ 2ρ

)2 ‖x0‖2
2m(δ1 − 2ρ)ρ2

)
.

(5.2)

Proof. We first estimate the term
∥∥etB2 − etB1

∥∥. We choose the circle C in the complex
plane defined by (4.10). Then C encloses the numbers −δi, 1 ≤ i ≤ n, and also the
eigenvalues of B1 and B2 for ‖B1 +4‖ < ρ < δ1/2 and ‖B2 +4‖ < ρ. Moreover,
the distance from C to {−δi}1≤i≤n is equal to 2ρ. As in the proof of Lemma 4.1, we put
η = δ1 − 2ρ. As in (4.11), we obtain

etB2 − etB1 =
1

2πi

∫
C

etz(zI −B2)
−1dz − 1

2πi

∫
C

etz(zI −B1)
−1dz

=
1

2πi

∫
C

etz
[
(zI −B2)

−1 − (zI −B1)
−1] dz

=
1

2πi

∫
C

etz(zI −B2)
−1 [(zI −B1)− (zI −B2)] (zI −B1)

−1dz

=
1

2πi

∫
C

etz(zI −B2)
−1(B2 −B1)(zI −B1)

−1dz

and therefore∥∥etB2 − etB1
∥∥ ≤ ‖B2 −B1‖

2π

∫
C

e−tη
∥∥(zI −B2)

−1∥∥ · ∥∥(zI −B1)
−1∥∥ |dz|
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≤ ‖B2 −B1‖
2π

e−tη

ρ2

∫
C

|dz| = ke−tη ‖B2 −B1‖
ρ2

, (5.3)

where k is as in (4.14) and where we used the estimates∥∥(zI −B1)
−1∥∥ ≤ 1

ρ
and

∥∥(zI −B2)
−1∥∥ ≤ 1

ρ

derived as in (4.13). Next, we calculate

ϕ(B2)− ϕ(B1) =

[∫ ∞
0

G
(
etB2x0

) [
etB2x0

]T
dt

]
[Γ(B2)]

−1

−
[∫ ∞

0

G
(
etB1x0

) [
etB1x0

]T
dt

]
[Γ(B1)]

−1

=

{∫ ∞
0

[
G
(
etB2x0

) [
etB2x0

]T −G (etB1x0
) [
etB1x0

]T]
dt

}
[Γ(B2)]

−1

+

[∫ ∞
0

G
(
etB1x0

) [
etB1x0

]T
dt

] [
[Γ(B2)]

−1 − [Γ(B1)]
−1]

=

{∫ ∞
0

[
G
(
etB2x0

)
−G

(
etB1x0

)] [
etB2x0

]T
dt

+

∫ ∞
0

G
(
etB1x0

) [
etB2x0 − etB1x0

]T
dt

}
[Γ(B2)]

−1

+

[∫ ∞
0

G
(
etB1x0

) [
etB1x0

]T
dt

]
[Γ(B2)]

−1 [Γ(B1)− Γ(B2)] [Γ(B1)]
−1

and

Γ(B1)− Γ(B2) =

∫ ∞
0

etB1x0x
T
0

[
etB1

]T
dt−

∫ ∞
0

etB2x0x
T
0

[
etB2

]T
dt

=

∫ ∞
0

(
etB1 − etB2

)
x0x

T
0

[
etB1

]T
dt+

∫ ∞
0

etB2x0x
T
0

[
etB1 − etB2

]T
dt.

Using here (4.14), i.e.,∥∥etB1
∥∥ ≤ ke−tη

ρ
and

∥∥etB2
∥∥ ≤ ke−tη

ρ
,

where k is as in (4.14), (5.3), and (4.9), i.e.,∥∥[Γ(B1)]
−1∥∥ ≤ 1

m
and

∥∥[Γ(B2)]
−1∥∥ ≤ 1

m
,

we find the estimate

‖ϕ(B2)− ϕ(B1)‖ ≤
{∫ ∞

0

γ
∥∥etB2 − etB1

∥∥ · ‖x0‖2 · ∥∥etB2
∥∥ dt
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+

∫ ∞
0

γ
∥∥etB1

∥∥ · ‖x0‖2 · ∥∥etB2 − etB1
∥∥ dt

}
1

m∫ ∞
0

γ
∥∥etB1

∥∥2 · ‖x0‖2 dt
1

m2

{∫ ∞
0

∥∥etB2 − etB1
∥∥ · ‖x0‖2 · ∥∥etB1

∥∥ dt

+

∫ ∞
0

∥∥etB2
∥∥ · ‖x0‖2 · ∥∥etB2 − etB1

∥∥ dt

}
≤ γk2 ‖x0‖2 · ‖B2 −B1‖

2ηmρ3
+
γk2 ‖x0‖2 · ‖B2 −B1‖

2ηmρ3

+
γk2 ‖x0‖2

2ηm2ρ2

{
k2 ‖x0‖2 · ‖B2 −B1‖

2ηρ3
+
k2 ‖x0‖2 · ‖B2 −B1‖

2ηρ3

}
,

which shows (5.2) and completes the proof.

Proposition 5.2. Under the assumptions of Lemma 5.1, there exists ρ > 0 such that the
equation (4.15) has exactly one solution in B(−4, ρ).

Proof. If we put K < 1, where K is defined in (5.2), then the map Φ defined by
(3.7) is Lipschitz with Lipschitz constant smaller than 1 and satisfies (by the proof of
Proposition 4.2)

Φ : B(−4, ρ)→ B(−4, ρ).

We conclude that Φ has a unique fixed point.

6 Convergence of the Optimal Derivative
Theorem 6.1. Assume (3.3). Let γ > 0 and suppose G satisfies G(0) = 0 and (5.1).
Then there exists ρ > 0 such that the map Φ defined by (3.7) is a strict contraction and
satisfies

Φ : B(−4, ρ)→ B(−4, ρ).

Then the sequence Aj converges to the unique fixed point of Φ provided

A0 ∈ B(−4, ρ).

Proof. We have
A0 ∈ B(−4, ρ)

if and only if
A0 +4 = DG(x0) ∈ B(0, ρ).

From the relation (4.1), we have

‖DG(x0)‖ ≤ γ.
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If we impose the condition
γ < ρ,

then we have
A0 ∈ B(−4, ρ).

In this case, the sequence {
Aj = −4+ Φ(Aj−1)

A0 ∈ B(−4, ρ)
(6.1)

converges to Ã. In consequence, for allA0 ∈ B(−4, ρ), the sequenceAj is well defined
with values in B(−4, ρ), and it converges geometrically to the unique fixed point in the
ball.
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