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Abstract

In this paper, we study problems for a linear two-time-scale time-variant dis-
crete system named D-model. For the boundary value problem, we give conditions
that guarantee existence and uniqueness of the solution and a convergent itera-
tive algorithm to compute asymptotic solutions. We use a perturbation method,
it consists in writing the solution as a straightforward development in the small
parameter without need to compute boundary layer correction terms as for the sin-
gular perturbation method. We give similar results for the final value problem; for
both problems we achieve model order reduction and remove the time scale, and
we discuss the initial value problem.

AMS Subject Classifications: 93C05, 93C55, 93C70, 93C73.
Keywords: Singularly perturbed system, discrete-time system, two-time-scale system,
boundary value problem.

1 Introduction
The theory of discrete dynamical systems and difference equations developed greatly in
the last thirty years, and the application of the theory of singular perturbations and time
scales has been a powerful analytical tool in their analysis, see [1, 5, 6, 10]. There are
two categories for the singularly perturbed discrete systems, fast sampling rate models
and slow sampling rate models. The general form of the slow sampling rate models is
given in [5–7] as(

xk+1

ε2lyk+1

)
=

(
A11 ε1−pA12

εpA21 εA22

)(
xk
yk

)
, k = 0, . . . , N − 1, (1.1)
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where l = 0, 1; p = 0, 1; and xk ∈ Rn, yk ∈ Rm are the state vectors at the kth discrete
time; Aij , i, j = 1, 2, are constant matrices with appropriate dimensions, and ε is a small
positive parameter. The three cases of system (1.1) result in the C-model (l = 0, p = 0)
and the R-model (l = 0, p = 1), where the small parameter appears respectively, in the
column and the row of the system matrix, and the D-model (l = 1, p = 1) where the
small parameter is located in an identical fashion to that of the continuous systems
described by differential equations. In this paper, we focus on the D-model for the
general time-variant case,

(
xk+1

εyk+1

)
=

(
A11 (k) A12 (k)
A21 (k) A22 (k)

)(
xk
yk

)
, k = 0, . . . , N − 1, (1.2)

i.e., system matrix depends on the discrete time k, and ε is a real parameter. We associate
to (1.2), the boundary values

x0 = α, yN = β, (1.3)

with α and β are given vectors in Rn and Rm, respectively. In optimal control, bound-
ary value problems are frequently encountered, see [8]. The solution of boundary value
problems is always a concern. The time-invariant case of problem (1.2)–(1.3) was con-
sidered in [7]. The authors used the singular perturbation method to give approximate
solutions. This formal method uses similar ideas with continuous singularly perturbed
system. It consists of finding the approximate solution in terms of an outer solution
and a boundary layer correction solution, see [2,3,5–7]. However these authors did not
address the question regarding the existence and uniqueness of the solution and gave
only the comparison between the full system and the reduced system without proving
the accuracy of their approximations. This paper is mainly devoted to the study of the
boundary value problem (1.2)–(1.3). We give conditions which guarantee the existence
and uniqueness of the solution and we develop the perturbation method we proposed
for the singularly perturbed difference equations, see [9, 11].
The structure of the paper is as follows. In Section 2, we give the main result. We study
the existence and uniqueness of the solution of problem (1.2)–(1.3) and we develop the
perturbation method. We obtain uniform and straightforward asymptotic approxima-
tions, found by a convergent iterative algorithm and we determine the domain of the
small parameter thus ensuring the validity of the approximation. Section 3 is devoted
to the final value problem associated to the D-model (1.2), we give similar results. We
study the existence and uniqueness of the solution and an algorithm to solve the prob-
lem. For both problems, we achieve model order reduction and time scale separation.
In Section 4, we discuss the initial value problem. The perturbation method is not appli-
cable because the resulting reduced problem may not have a solution. We end our paper
with a conclusion in Section 5.
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2 Main Result
In this section, we give the main result. The perturbation method consists in writing the
solution (xk(ε), yk(ε))

′, k = 0, . . . , N , as a power series in the small parameter ε:

xk =
∞∑
j=0

εjx
(j)
k , yk =

∞∑
j=0

εjy
(j)
k , k = 0, . . . , N. (2.1)

In theorem 2.1, we prove the convergence of the series (2.1) and we give conditions
that guarantee the existence and uniqueness of the solution of the boundary value prob-
lem (1.2)–(1.3). A convergent algorithm is given to indicate the sequence of steps for
computing the terms of these series.

2.1 Formal Asymptotic Solution
We seek a straightforward expansion of the form (2.1). Substituting the power series
(2.1) into in (1.2)–(1.3) and equating coefficients term-wise then determines the coeffi-
cients of (2.1) successively. Thus for the zeroth order approximation, we must have the
following equations

x
(0)
0 = α, (2.2)

x
(0)
k+1 = A11(k)x

(0)
k + A12(k)y

(0)
k , k = 0, . . . , N − 1, (2.3)

0 = A21(k)x
(0)
k + A22(k)y

(0)
k , k = 0, . . . , N − 1, (2.4)

y
(0)
N = β. (2.5)

The system (2.2)–(2.3)–(2.4)–(2.5) defines the reduced problem of the boundary value
problem (1.2)–(1.3), it results from the cancellation of the small parameter ε in the
original problem (1.2)–(1.3). The algebraic equation (2.4) sets a relationship between
the coefficients x(0)k and y(0)k . We can write y(0)k according to x(0)k provided the matrices
A22(k), k = 0, . . . , N − 1, are nonsingular. Therefore, we have

y
(0)
k = −A22(k)

−1A21(k)x
(0)
k , k = 0, . . . , N − 1. (2.6)

Substituting (2.6) into (2.3), we find

x
(0)
k+1 =

(
A11(k)− A12(k)A22(k)

−1A21(k)
)
x
(0)
k , k = 0, . . . , N − 1. (2.7)

The problem (2.2)–(2.7) is an initial value problem whose solution is as follows

x
(0)
0 = α, x

(0)
k =

k−1∏
i=0

(
A11(i)− A12(i)A22(i)

−1A21(i)
)
α, k = 1, . . . , N. (2.8)
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Thus, from (2.6) and (2.8), we have

y
(0)
0 = −A22(0)

−1A21(0)α, (2.9)

y
(0)
k = −A22(k)

−1A21(k)
k−1∏
i=0

(
A11(i)− A12(i)A22(i)

−1A21(i)
)
α, (2.10)

k = 1, . . . , N − 1.

Notice that the terms y(0)k , k = 0, . . . , N − 1, can be computed without any knowledge
of the final condition yN = β. By analogy with the differential equations, we say that
there is boundary layer at yN .
For higher order approximation j, j ≥ 1, we have the following equations

x
(j)
0 = 0, (2.11)

x
(j)
k+1 = A11(k)x

(j)
k + A12(k)y

(j)
k , k = 0, . . . , N − 1, (2.12)

y
(j−1)
k+1 = A21(k)x

(j)
k + A22(k)y

(j)
k , k = 0, . . . , N − 1, (2.13)

y
(j)
N = 0. (2.14)

In the algebraic equation (2.13), to compute x(j)k , y(j)k , k = 0, . . . , N−1, we need to have
at our disposal the values y(j−1)k , k = 1, . . . , N , which are computed from the previous
development of order j − 1. If the matrices A22(k), k = 0, . . . , N − 1, are nonsingular,
we can write

y
(j)
k = A22(k)

−1y
(j−1)
k+1 − A22(k)

−1A21(k)x
(j)
k , k = 0, . . . , N − 1. (2.15)

According to (2.12) and (2.15), we have for k = 0, . . . , N − 1,

x
(j)
k+1 =

(
A11(k)− A12(k)A22(k)

−1A21(k)
)
x
(j)
k + A12(k)A22(k)

−1y
(j−1)
k+1 . (2.16)

Notice that the time scale is removed for all subsystems defined above and their dimen-
sions are equal to n or m, lower than the dimension of the original problem equal to
n+m.

2.2 Convergence of the Asymptotic Solution
We prove that, there is some domain of the small parameter ε, where the power series
(2.1) are convergent. Therefore, the approximations defined in section 2.1 are validated.
Suppose

v = (x0, y0, x1, y1, . . . , xN , yN)
′ , (2.17)

where the prime denotes the transpose.
We consider for the vector v the norm in R(n+m)(N+1)

‖v‖ = max (|x0|, |y0|, |x1|, |y1|, . . . , |xN |, |yN |) ,
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and for a matrix A = (aij), the associated matrix norm

‖A‖ = sup
‖v‖=1

‖Av‖ = max
k=0,...,(n+m)(N+1)

(n+m)(N+1)∑
j=0

|aij|

 .

Theorem 2.1. Assume that A22(k), k = 0, . . . , N − 1, are nonsingular. There exists
a positive real number ε0, for all ε such that |ε| < ε0, the solution of the boundary
value problem (1.2)–(1.3), that is (xk(ε), yk(ε))

′, 0 ≤ k ≤ N , exists and is unique,
and satisfies (2.1) uniformly for 0 ≤ k ≤ N , where the terms x(0)k , y(0)k , and x(j)k , y(j)k ,
j ≥ 1, for 0 ≤ k ≤ N , are respectively the solutions of (2.8), (2.9)–(2.10)–(2.5) and
(2.11)–(2.16), (2.15)–(2.14).
More precisely, for all k = 0, . . . , N , we have

|xk(ε)−
n∑

j=0

εjx
(j)
k | ≤ C

(|ε|/ε0)n+1

1− |ε|/ε0
,

|yk(ε)−
n∑

j=0

εjy
(j)
k | ≤ C

(|ε|/ε0)n+1

1− |ε|/ε0
,

(2.18)

where C is a positive constant.

Proof. We write the system (2.2)–(2.3)–(2.4)–(2.5) in the matrix form

A0v
(0) = f, (2.19)

where v(0) and f are vectors in R(n+m)(N+1) defined by

v(0) :=
(
x
(0)
0 , y

(0)
0 , x

(0)
1 , y

(0)
1 , . . . , x

(0)
N , y

(0)
N

)′
, (2.20)

f := (α, 0, 0, . . . , 0, β)′ , (2.21)

and A0 is the block matrix given below

In 0 0 0 . . . 0
A11(0) A12(0) −In 0
A21(0) A22(0) 0 0

... . . . ...
. . . A11(N − 1) A12(N − 1) −In 0
. . . A21(N − 1) A22(N − 1) 0 0

0 . . . 0 0 0 Im


.

Employing the Leibniz formula for determinant of block matrices, see [4], we have

detA0 =
N−1∏
k=0

detA22(k).
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Therefore, if the matrices A22(k), k = 0, . . . , N − 1, are nonsingular, the matrix A0 is
also nonsingular. Hence, we can denote

ε0 :=
1

‖UA−10 ‖
, C := ‖A−10 ‖‖f‖. (2.22)

The system (2.11)–(2.12)–(2.13)–(2.14) has the form

A0v
(j) = −Uv(j−1); v(j) :=

(
x
(j)
0 , y

(j)
0 , x

(j)
1 , y

(j)
1 , . . . , x

(j)
N , y

(j)
N

)′
, (2.23)

where U is the matrix given below

U =



0 0 0 0 . . . 0
0 0 0 0
0 0 0 −Im
... . . . ...

0 0 0 −Im
0 . . . 0 0 0 0


.

It is easily verified that the problem (1.2)–(1.3) can be represented in the matrix form

Aεv = f, (2.24)

where v and f are given by (2.17) and (2.21) respectively, and Aε satisfies

Aε = A0 + εU.

As |ε| < ε0, from (2.22) we have ‖εUA−10 ‖ < 1. Thus we can write

A−10

∞∑
j=0

(
−εUA−10

)j
= A−10

(
I + εUA−10

)−1
= A−1ε . (2.25)

Hence, the solution of system (2.24) exists, is unique and satisfies

v (ε) = A−1ε f. (2.26)

From (2.23), (2.25) and (2.26), it is deduced that

v (ε) =
∞∑
j=0

ε(j)v(j); v(j) = A−10

(
−UA−10

)j
f. (2.27)

From (2.19), (2.20), (2.21) and (2.23), we verify that the components x(0)k ,y(0)k , and x(j)k ,
y
(j)
k are the solutions of the problems (2.2)–(2.3), (2.4)–(2.5) and (2.11)–(2.12), (2.13)–

(2.14), respectively. Notice that equations (2.3), (2.4) and (2.12), (2.13) are respectively
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equivalent to (2.8), (2.9)–(2.10), (2.11)–(2.16), and (2.15)–(2.14), thereby completing
the first part of the proof.
To evaluate the reminder of the series, we have

‖A−1ε − A−10

∞∑
j=0

(
−εUA−10

)(j) ‖ ≤ A−10 ‖
∞∑

j=n+1

‖εUA−10 ‖j

=
‖A−10 ‖‖εUA−10 ‖n

1− ‖εUA−10 ‖
≤ ‖A−10 ‖

(|ε|/ε0)n+1

1− |ε|/ε0
.

(2.28)

From (2.25) and (2.28), follows

‖v (ε)−
∞∑
j=0

εjv(j)‖ ≤ ‖A−1ε − A−10

n∑
j=0

(
−εUA−10

)j ‖‖f‖
≤ ‖A−10 ‖‖f‖

(|ε|/ε0)n+1

1− |ε|/ε0
.

(2.29)

The chosen norm and (2.22) give (2.18). This completes the proof.

2.3 Algorithm
In the following, we give a recursive convergent algorithm to exhibit the sequence of
steps that gives the approximate solutions of problem (1.2)–(1.3).

Zeroth-order solution

• Step 1. Fix x(0)0 = α; for k = 1, . . . , N , compute x(0)k , from (2.8). Fix y(0)N = β;
compute y(0)0 from (2.9), and y(0)k for k = 1, . . . , N − 1, from (2.10).

First-order solution

• Step 2. Fix x(1)0 = 0; compute x(1)k for k = 1, . . . , N , from (2.16), where y(0)k ,
k = 1, . . . , N , are determined in step 1.

• Step 3. Fix y(1)N = 0; compute y(1)k for k = 0, . . . , N − 1, from (2.15), where x(1)k

are determined for k = 0, . . . , N − 1, from step 2.

Jth-order solution

• Step 4. Fix x(j)0 = 0; compute x(j)k for k = 1, . . . , N , from (2.16), where y(j−1)k ,
k = 1, . . . , N , are determined in a previous step.

• Step 5. Fix y(j)N = 0; compute y(j)k for k = 0, . . . , N − 1, from (2.15), where x(j)k ,
k = 0, . . . , N − 1, are determined in a previous step.

Then determine
(
x
(0)
k , y

(0)
k

)′
+ε
(
x
(1)
k , y

(1)
k

)′
+. . .+εj

(
x
(j)
k , y

(j)
k

)′
, k = 0, . . . , N .
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3 Final Value Problem
In this section, we study the final value problem. We associate to the system (1.2) the
values

xN = α, yN = β. (3.1)

The time-invariant case of problem (1.2)–(3.1) was considered in [7] . The authors used
the heuristic singular perturbation method which consists in writing the solution as a
sum of an outer solution and boundary layer correction term. In order to develop the
perturbation method for the final value problem (1.2)–(3.1), we write the solution as a
straightforward development, a power series of the small parameter

xk =
∞∑
j=0

εjx
(j)
k , yk =

∞∑
j=0

εjy
(j)
k , k = 0, . . . , N. (3.2)

In this section, we give an algorithm for computing the coefficients of the series (3.2),
and we give conditions assuring the existence of the solution.

3.1 Perturbation Method
Substituting the power series (3.2) into the system (1.2)–(3.1), we must have for the
zeroth order approximation

x
(0)
N = α, y

(0)
N = β, (3.3)

and the same equations (2.3) and (2.4) given in Section 2.1 for the boundary value
problem (1.2)–(1.3). The system (2.3)–(2.4)–(3.3) is the reduced problem of the final
value problem (1.2)–(3.1).
It is necessary that the matrices A22(k), k = 0, . . . , N − 1, are nonsingular to deduce
from (2.3) and (2.4) the equation (2.6) and the following equation (2.7)

x
(0)
k+1 =

(
A11(k)− A12(k)A22(k)

−1A21(k)
)
x
(0)
k , k = 0, . . . , N − 1.

Moreover, if the matrices A11(k) − A12(k)A22(k)
−1A21(k), k = 0, . . . , N − 1, are

nonsingular, we have from (2.7)

x
(0)
k =

(
A11(k)− A12(k)A22(k)

−1A21(k)
)−1

x
(0)
k+1, k = 0, . . . , N − 1. (3.4)

For an abbreviated writing, we denote

B(k) = A11(k)− A12(k)A22(k)
−1A21(k), k = 0, . . . , N − 1. (3.5)

Solving the final value problem (3.3)–(3.4), follows the solution

x
(0)
N−k =

N−1∏
i=N−k

B(i)−1α k = 1, . . . , N. (3.6)
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Consequently, from (2.6) and (3.6), we have for k = 1, . . . , N ,

y
(0)
N−k = −A22(N − k)−1A21(N − k)

N−1∏
i=N−k

B(i)−1A21(i)
−1α. (3.7)

For higher order approximation j, j ≥ 1, we must have

x
(j)
N = 0, y

(j)
N = 0, (3.8)

and the equations (2.12), (2.13) given in Section 2.1. If for k = 0, . . . , N − 1, A22(k)
are nonsingular, the coefficients of (3.2) satisfy the equations (2.15), and (2.16) given
in Section 2.1. In addition, if B(k), k = 0, . . . , N − 1, defined in (3.5) are nonsingular,
we have

x
(j)
k = B(k)−1x

(j)
k+1 −B(k)−1A12(k)A22(k)

−1y
(j−1)
k+1 , k = 0, . . . , N − 1. (3.9)

We remind the equation (2.15), it is

y
(j)
k = A22(k)

−1y
(j−1)
k+1 − A22(k)

−1A21(k)x
(j)
k , k = 0, . . . , N − 1. (3.10)

It is easy to prove the following theorem.

Theorem 3.1. Assume that A22(k) and B(k), k = 0, . . . , N−1, are nonsingular. There
exists a positive real number ε0, for all ε such that |ε| < ε0, the solution of the final
value problem (1.2)–(3.1), that is (xk(ε), yk(ε))′, 0 ≤ k ≤ N , satisfies (3.2) uniformly
for 0 ≤ k ≤ N , where x(0)k , y(0)k , and x(j)k , y(j)k are the solutions of (3.3), (3.6), (3.7),
and (3.8), (3.9), (3.10), respectively.
More precisely, for all 0 ≤ k ≤ N , we have

|xk(ε)−
n∑

j=0

εjx
(j)
k | ≤ C

(|ε|/ε0)n+1

1− |ε|/ε0
,

|yk(ε)−
n∑

j=0

εjy
(j)
k | ≤ C

(|ε|/ε0)n+1

1− |ε|/ε0
,

where C is a positive constant.

Proof. The proof is similar to that of theorem 2.1.
Briefly, we write the problem (1.2)–(3.1) in the matrix form

Aεv = f,

where
v = (x0, y0, x1, y1, . . . , xN , yN)

′ ,

f = (0, 0, . . . , 0, α, β)′ .
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The matrix Aε is the combination A0 + εU , where A0 is the following block matrix

A11(0) A12(0) −In 0 . . . 0
A21(0) A22(0) 0 0

... . . . ...
. . . A11(N − 1) A12(N − 1) −In 0
. . . A21(N − 1) A22(N − 1) 0 −Im
. . . In 0

0 . . . 0 0 0 Im


,

and U the matrix below

U =



0 0 0 0 . . . 0
0 0 0 −Im
... . . . ...

0 0 0 −Im
0 0 0 0

0 . . . 0 0 0 0


.

The Leibniz formula for the determinant of block matrix, see [4], gives

detA0 =
N−1∏
k=0

detA22(k) det(A11(k)− A12(k)A22(k)
−1A21(k)).

Because we assumed A22(k) and A11(k)− A12(k)A22(k)
−1A21(k), 0 ≤ k ≤ N − 1, to

be nonsingular, hence the matrix A0 given above is nonsingular. We denote

ε0 :=
1

‖UA−10 ‖
, C := ‖A−10 ‖‖f‖.

The following of the proof is routine and left to the reader.

3.2 Algorithm
Zeroth-order approximation

• Step 1. Fix x(0)N = α, y(0)N = β; compute x(0)N−k, 1 ≤ k ≤ N , from (3.6), and y(0)N−k,
1 ≤ k ≤ N from (3.7).

Jth-order approximation

• Step 2. Fix x(j)N = 0; compute x(j)k , 0 ≤ k ≤ N − 1, from (3.9), where x(j−1)k and
y
(j−1)
k are determined from the development of order j − 1, i.e., a previous step.
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• Step 3. Fix y(j)N = 0; compute y(j)k , 0 ≤ k ≤ N − 1, from (3.10) where the terms
x
(j)
k are determined in step 2, and y(j−1)k+1 from the development of order j− 1, i.e.,

a previous step.
Then determine(

x
(0)
k , y

(0)
k

)′
+ ε

(
x
(1)
k , y

(1)
k

)′
+ . . .+ εj

(
x
(j)
k , y

(j)
k

)′
.

4 Initial Value Problem
For the initial value problem, we associate to the system (1.2) the fixed values

x0 = α, y0 = β. (4.1)

The resulting reduced problem is the following

x
(0)
0 = α, (4.2)

x
(0)
k+1 = A11(k)x

(0)
k + A12(k)y

(0)
k , k = 0, . . . , N − 1, (4.3)

0 = A21(k)x
(0)
k + A22(k)y

(0)
k , k = 0, . . . , N − 1, (4.4)

y
(0)
0 = β. (4.5)

In equation (4.4), for k = 0, we verify

0 = A21(0)x
(0)
0 + A22(0)y

(0)
0 , (4.6)

thus from (4.2), (4.5) and (4.6) results the equation

0 = A21(0)α + A22(0)β, (4.7)

this condition is not necessary verified. There is an other difficulty, the equation (4.4)
is not defined for k = N , i.e., there is no indication for the computation of the value
y
(0)
N , it can be optional. The perturbation method is not applicable for the initial value

problem.

5 Conclusion
In this paper, we have consider a class of nonautonomous discrete singularly perturbed
systems said D-model. We studied three problems. For both boundary value prob-
lem and final value problem, we have develop the perturbation method. Besides the
advantage of removing the time scale and the decomposition of the full system in sub-
systems of reduced order with decoupled state variables, there is no need to compute the
boundary layer correction terms as for the singular perturbation method. Convergent
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iterative algorithms have been provided showing the steps of the method. For the ini-
tial value problem, the resulting reduced problem does not necessary satisfy the given
initial values, thus the perturbation method is not applicable. Notice, the perturbation
method can be extended to all important classes of linear singularly perturbed problems
resulting from optimal control. This will be indicated separately.
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