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Abstract

In this paper, the authors consider both the forced and unforced versions of a
second order nonlinear differential equation with a p-Laplacian. They give suf-
ficient conditions as well as necessary and sufficient conditions for the unforced
equation to be of the strong nonlinear limit-circle type, and they give sufficient
conditions for the forced equation to be of the strong nonlinear limit-circle type.
They also give sufficient conditions for the forced equation to not be of the strong
nonlinear limit-circle type.
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1 Introduction
In this paper, we study the forced second order nonlinear differential equation(

a(t)|y′|p−1y′
)′

+ r(t)|y|λ sgn y = e(t) (1.1)
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as well as the unforced equation(
a(t)|y′|p−1y′

)′
+ r(t)|y|λ sgn y = 0, (1.2)

where R+ = [0,∞), λ > p > 0, a ∈ C1(R+), r ∈ C1(R+), e ∈ C(R+), and a(t) > 0
and r(t) > 0 on R+. If λ = p, then these are the well-known half-linear equations.
Since here we have λ > p, we are in what is referred to as the super-half-linear case; if
λ < p, then it is the sub-half-linear case. This terminology was introduced for the first
time in [2–4].

Remark 1.1. The functions a, r, and e are smooth enough so that all solutions of (1.1)
and (1.2) are defined on R+ (e.g., see [6, Lemma 1(i)]). Moreover, all nontrivial so-
lutions of (1.1) are nontrivial in any neighborhood of ∞ (e.g., see [14, Theorem 9.4]
and [8, Theorem 4]).

It will be convenient to define the following constants:

α =
p+ 1

(λ+ 2)p+ 1
, β =

(λ+ 1)p

(λ+ 2)p+ 1
, γ =

p+ 1

p(λ+ 1)
,

δ =
p+ 1

p
, δ1 = γ−

1
λ+1 ,

ω =
p

(λ+ 2)p+ 1
, ω1 =

(λ+ 2)p+ 1

(λ+ 1)(p+ 1)
< 1 ,

ω2 =
(λ+ 1)(p+ 1)

λ− p
, ω3 =

(λ+ p+ 2)p

(p+ 1)((λ+ 2)p+ 1)
,

q = max

{
1

p+ 1
, ω1

}
< 1 , q1 =

1

1− q
.

Notice that α = 1− β. We define the functions R, g : R+ → R by

R(t) = a1/p(t) r(t) and g(t) = −a
1/p(t)R′(t)

Rα+1(t)
.

For any continuous function h : R+ → R, we let h+(t) = max{h(t), 0} and h−(t) =
max{−h(t), 0} so that h(t) = h+(t)− h−(t). In order to simplify some of the notation
in what follows, for any solution y : R+ → R of (1.1), we let

y[1](t) = a(t)|y′(t)|p−1y′(t) ,

V (t) =
|y[1](t)|δ

R(t)
+ γ|y(t)|λ+1 =

a(t)

r(t)
|y′(t)|p+1 + γ|y(t)|λ+1 ,

F (t) = Rβ(t)V (t) , (1.3)

A1(t) =
(

max
0≤s≤t

|g(s)|+ 1
) ∫ t

0

R−ω(s)|e(s)| ds , (1.4)
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A(t) =

∫ t

0

|g′(s)| ds+ 1 +
(

max
0≤s≤t

|g(s)|+ 1
) ∫ t

0

R−ω(s)|e(s)| ds , (1.5)

and
G(t) = F (t)A−q1(t) . (1.6)

Here we are especially interested in studying what are known as the strong nonlinear
limit-circle type solutions of equations (1.1) and (1.2) as defined below. This property
was first introduced in [4] for sub-half-linear equations and in [3] for super-half-linear
equations.

Definition 1.2. A solution y of (1.1) is said to be of the strong nonlinear limit-circle
type if∫ ∞

0

|y(t)|λ+1dt <∞ and
∫ ∞

0

|y[1](t)|δ

R(t)
dt =

∫ ∞
0

a(t)

r(t)
|y′(t)|p+1dt <∞ .

Equation (1.1) is said to be of the strong nonlinear limit-circle type if every solution is
of the strong nonlinear limit-circle type.

2 Preliminary Lemmas
In this section, we present some lemmas that will be needed in the proofs of our main
results. Our first lemma provides some basic information about the behavior of solutions
of equation (1.1).

Lemma 2.1. Let y be a solution of (1.1). Then:

(i) the estimates

|y(t)| ≤ δ1R
−ω(t)F

1
λ+1 (t) (2.1)

and

|y[1](t)| ≤ Rω(t)F
p
p+1 (t) (2.2)

hold for t ≥ 0;

(ii) for 0 ≤ τ < t, we have

F (t) = F (τ)− αg(τ) y(τ)y[1](τ) + αg(t) y(t)y[1](t)

− α
∫ t

τ

g′(s) y(s)y[1](s) ds+ I(t, τ), (2.3)
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where

I(t, τ) =

∫ t

τ

[
δR−α(s)|y[1](s)|1/p sgn y[1](s)− αg(s) y(s)

]
e(s) ds .

Moreover,

|I(t, τ)| ≤
∫ t

τ

R−ω(s)
[
δF 1/(p+1)(s) + αδ1|g(s)|F 1/(λ+1)(s)

]
|e(s)| ds . (2.4)

Proof. The estimates (2.1), (2.2), and (2.3) were proved in [6, Lemma 1]; (2.4) follows
from these.

Next, we need to show that the function G is bounded.

Lemma 2.2. For any solution y of (1.1), the function G is bounded.

Proof. Let y be a solution of (1.1). Since G(t) ≥ 0 on R+, we only need to show that
G is bounded from above. So suppose that this is not the case; then there is a sequence
{tk}∞k=1 such that lim

k→∞
tk =∞ and

lim
k→∞

G(tk) =∞ . (2.5)

It follows from (1.6) that lim
k→∞

F (tk) =∞, so we may assume that F (tk) ≥ 1 for k ≥ 1.

Hence, there exist two sequences {σk}∞k=1 and {τk}∞k=1 with tk ≤ σk ≤ τk such that

G(tk) = G(σk) =
1

2
G(τk) (2.6)

and
G(σk) ≤ G(t) ≤ G(τk) for σk ≤ t ≤ τk , k = 1, 2, . . . (2.7)

From (1.6) and (2.7), we see that

max
σk≤t≤τk

F (t) = F (τk) and F (t) ≥ 1 on [σk, τk] . (2.8)

Now, g is locally of bounded variation, so

|g(t)| − |g(0)| ≤ |g(t)− g(0)| ≤
∫ τk

0

|g′(s)| ds (2.9)

for t ∈ [σk, τk]. Furthermore, Lemma 2.1(i) and (2.8) imply the existence of k0 ∈
{1, 2, . . . } and C > 0 (not depending on k) such that

|I(τk, σk)| ≤
∫ τk

σk

R−ω(s)
(
δF 1/(p+1)(s) + αδ1|g(s)|F 1/(λ+1)(s)

)
|e(s)| ds

≤
[
δ + αδ1 max

0≤s≤τk
|g(s)|

] ∫ τk

σk

R−ω(s)F 1/(p+1)(s)|e(s)| ds

≤ C
(

max
0≤s≤τk

|g(s)|+ 1
)
F 1/(p+1)(τk)

∫ τk

σk

R−ω(s)|e(s)| ds

≤ CA1(τk)F
1/(p+1)(τk) (2.10)
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for k ≥ k0.
Letting τ = σk and t = τk in part (ii) of Lemma 2.1 and using (2.1), (2.2), (2.8),

(2.9), and (2.10), we obtain

|y(t)y[1](t)| ≤ δ1F
ω1(τk) for t ∈ [σk, τk]

and

F (τk)− F (σk) ≤ α1F
ω1(τk)

(
|g(σk)|+ |g(τk)|+

∫ τk

0

|g′(s)| ds
)

+ CA1(τk)F
1/(p+1)(τk)

≤ F q(τk)
{

2α1|g(0)|+ 3α1

∫ τk

0

|g′(s)| ds+ CA1(τk)
}

(2.11)

for k ≥ k0, where α1 = αγ−1/(λ+1). It is easy to see that there is an integer k1 ≥ k0 and
a constant M > 0 such that

2α1|g(0)| ≤M
(∫ τk

0

|g′(s)| ds+ 1
)

for k ≥ k1 .

From, (1.4), (1.5), and (2.11), we obtain

F (τk)− F (σk) ≤M1A(τk)F
q(τk)

for k ≥ k1, where M1 = max{C,M + 3α1}. From this, (1.6), and (2.6), we have

1

2
Aq1(τk)G(τk) = Aq1(τk)

[
G(τk)−G(σk)

]
≤ Aq1(τk)G(τk)− Aq1(σk)G(σk)

= F (τk)− F (σk) ≤M1A
1+qq1(τk)G

q(τk),

or
G1−q(τk) ≤ 2M1

for k ≥ k1. This contradicts (2.5) and completes the proof of the lemma.

The following result is well known in the case m = 2, however we will need it for
other not necessarily integer values.

Lemma 2.3. Let m > 0, f ∈ C1(R+), f ′ be bounded on R+, and∫ ∞
0

|f(t)|m dt <∞ . (2.12)

Then

lim
t→∞

f(t) = 0 . (2.13)
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Proof. Let M > 0 be such that

|f ′(t)| ≤M <∞ on R+ , (2.14)

lim sup
t→∞

f(t) = N , and lim inf
t→∞

f(t) = N1, for some N and N1 with −∞ ≤ N1 ≤
N ≤ ∞. Suppose that (2.13) does not hold. Then, in view of (2.12), we see that
−∞ ≤ N1 ≤ 0, 0 ≤ N ≤ ∞, and we do not have N = N1 = 0.

If N > 0, then there are sequences
{
tn
}∞
n=1

and
{
t̄n
}∞
n=1

such that

tn < t̄n < tn+1 , f(tn) =
N

2
, and t̄n = tn +

N

2M
for n = 1, 2, . . . .

Now (2.14) implies −M ≤ f ′(t), so the function f lies above the line passing through

the points
[
tn,

N

2

]
and [t̄n, 0], i.e.,

f(t) ≥ N

2
−M(t− tn) ≥ 0 for t ∈ [tn, t̄n] .

Hence,∫ ∞
0

|f(t)|m dt ≥
∞∑
n=1

∫ t̄n

tn

[f(t)]m dt ≥
∞∑
n=1

∫ t̄n

tn

[N
2
−M(t− tn)

]m
dt

=
∞∑
n=1

1

M(m+ 1)

(N
2

)m+1

=∞ ,

contradicting (2.12).
If N = 0, then N1 < 0, and a similar argument will again yield a contradiction.

3 Strong Nonlinear Limit-circle Results
Our first result in this section gives sufficient conditions for equation (1.2) to be of the
strong nonlinear limit-circle type, as well as a necessary and sufficient condition for this
to happen.

Theorem 3.1. (i) If ∫ ∞
0

R−β(t)
(∫ t

0

|g′(s)| ds+ 1
)ω2

dt <∞, (3.1)

then equation (1.2) is of the strong nonlinear limit-circle type.
(ii) Assume that ∫ ∞

0

|g′(s)| ds <∞. (3.2)
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Then equation (1.2) is of the strong nonlinear limit-circle type if and only if∫ ∞
0

R−β(t) dt <∞ . (3.3)

Proof. (i) Let y be a solution of (1.2). If g is not identically constant on R+, then
by [7, Lemma 2.4], there is a constant K > 0 such that

G1(t)
def
= F (t)

(∫ t

0

|g′(s)| ds+ 1
)−ω2

≤ K for t ∈ R+ . (3.4)

If g is identically constant on R+, the boundedness of G1 = F follows from [7, Lemma
2.9]. From this, (1.3), and (3.4), we have∫ ∞

0

V (t) dt =

∫ ∞
0

R−βF (t) dt

=

∫ ∞
0

R−β(t)
(∫ t

0

|g′(s)| ds+ 1
)ω2

G1(t) dt

≤ K

∫ ∞
0

R−β(t)
(∫ t

0

|g′(s)| ds+ 1
)ω2

dt <∞

by (3.1). Hence, y is of the strong nonlinear limit-circle type and part (i) is proved.
(ii) If (3.3) holds, then part (i) implies equation (1.2) is of the strong nonlinear limit-

circle type. Let ∫ ∞
0

R−β(t) dt =∞ .

Then, by [7, Lemma 2.2], there is a solution y of (1.1), a constant C0 > 0, and a t0 ∈ R+

such that

0 <
3

4
C0 ≤ F (t) for t ≥ t0 . (3.5)

From this and (1.3),

γ

∫ ∞
t0

|y(t)|λ+1 dt+

∫ ∞
t0

R−1(t)|y[1](t)|δ dt

=

∫ ∞
t0

R−β(t)F (t) dt ≥ 3

4
C0

∫ ∞
t0

R−β(t) dt =∞ .

Hence, either

∞∫
0

|y(t)|λ+1 dt = ∞ or

∞∫
0

R−1(t)|y[1](t)|δ dt = ∞ and so y is not of the

strong nonlinear limit-circle type. This proves (ii).
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Remark 3.2. A result similar to Theorem 3.1(i), but for equation (1.1), is proved in [6,
Theorem 1 and Remark 1] if ∫ ∞

0

R−ω(t)|e(t)| dt <∞ (3.6)

holds and ω2 in (3.1) is replaced by q1. The following theorem provides a strong non-
linear limit-circle result for equation (1.1) without assuming condition (3.6) holds.

Theorem 3.3. If ∫ ∞
0

R−β(t)Aq1(t) dt <∞, (3.7)

then equation (1.1) is of the strong nonlinear limit-circle type.

Proof. Let y be a solution of (1.1). By Lemma 2.2, the function G is bounded, say
0 ≤ G(t) ≤ G0 <∞ for t ∈ R+. From this, (1.6), and (3.7), we have∫ ∞

0

V (t) dt = γ

∫ ∞
0

|y(t)|λ+1 dt+

∫ ∞
0

R−1(t)|y[1](t)|δ dt

=

∫ ∞
0

R−β(t)F (t) dt =

∫ ∞
0

R−β(t)Aq1(t)G(t) dt <∞ ,

so y is of the strong nonlinear limit-circle type.

Remark 3.4. (i) For equation (1.2), note that q = ω1 if and only if p ≥ λ

λ+ 2
; in this

case q1 = ω2. Hence, if p ≥ λ

λ+ 2
, then Theorem 3.1(i) is a special case of Theorem

3.3. If p <
λ

λ+ 2
, then q1 > ω2 and the conditions in Theorem 3.1 are weaker than

those in Theorem 3.3. In this case, (1.6) and (3.4) imply lim
t→∞

G(t) = 0.

(ii) If p <
λ

λ+ 2
, so that q1 > ω2, then condition (3.1) above is better than the

condition used in Theorem 1 and Remark 1 in [6] where a result similar to Theorem
3.1(i) above was proved for the forced equation (1.1).

(iii) Consider Equation (1.2) with (3.2) holding. Then G(t) ≥ F (t)
( ∞∫

0

|g′(s)| ds+

1
)−q1 , and according to [7, Lemma 2.2], there is a solution y, a constant C > 0, and t0 ∈
R+ such that (3.5) holds. Hence, lim inf

t→∞
G(t) > 0 and so in general the boundedness of

G cannot be replaced by lim
t→∞

G(t) = 0 in Lemma 2.2.
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4 Non Strong Limit-circle Type Equations

In this section we give conditions that ensure equation (1.1) is not of the strong nonlinear
limit-circle type.

Theorem 4.1. Assume that∫ ∞
0

|e(t)| exp
{ p

p+ 1

∫ t

0

R′−(s)

R(s)
ds
}
dt <∞ . (4.1)

If ∫ ∞
0

exp
{
−
∫ t

0

R′+(s)

R(s)
ds
}
dt =∞ , (4.2)

then (1.1) is not of the strong nonlinear limit-circle type.

Proof. For any solution y of (1.1), we see that

|e(t)|
r(t)
|y′(t)| = |e(t)|

R(t)
|y[1](t)|1/p = |e(t)|R−1/δ(t)

( |y[1](t)|δ

R(t)

)1/(p+1)

≤ |e(t)|R−1/δ(t)V 1/(p+1)(t). (4.3)

A straight forward calculation gives

V ′(t) =
( 1

R(t)

)′
|y[1](t)|δ + δ

e(t)

r(t)
y′(t) .

Hence, in view of (4.3),

V ′(t) ≥ −
R′+(t)

R(t)
V (t)− |e(t)|R−1/δ(t)V 1/(p+1)(t) .

Setting Z = V 1/δ, we obtain

Z ′(t) +
R′+(t)

δR(t)
Z(t) ≥ −|e(t)|

δ
R−1/δ(t),

and so(
Z(t) exp

{1

δ

∫ t

0

K(s) ds
})′
≥ −1

δ
|e(t)|R−1/δ(t) exp

{1

δ

∫ t

0

K(s) ds
}

= −1

δ
|e(t)|R−1/δ(0) exp

{1

δ

∫ t

0

R′−(s)

R(s)
ds
}
,
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where K(t) =
R′+(t)

R(t)
. Integrating and applying (4.1), we have

Z(t) exp
{1

δ

∫ t

0

K(s) ds
}

≥ Z(0)− 1

δ
R−1/δ(0)

∫ ∞
0

|e(t)| exp
{1

δ

∫ t

0

R′−(s)

R(s)
ds
}
dt > −∞ (4.4)

for t ∈ R+.
Now, let y be a solution of (1.1) such that

Z(0) ≥ 1

δ
R−1/δ(0)

∫ ∞
0

|e(t)| exp
{1

δ

∫ t

0

R′−(s)

R(s)
ds
}
dt+ 1 .

From this and (4.4), we obtain

V (t) = Zδ(t) ≥ exp
{
−
∫ t

0

K(s) ds
}
, t ∈ R+ .

Integrating and applying condition (4.2), we see that∫ t

0

V (s) ds =

∫ t

0

[ |y[1](s)|δ

R(s)
+ γ|y(s)|λ+1

]
ds→∞ (4.5)

as t→∞, and hence, y is not of the strong nonlinear limit-circle type. This completes
the proof of the theorem.

In order to interpret the content of the above theorem, we first recall the definitions
of nonlinear limit-point and nonlinear limit-circle solutions as well as that of a strong
nonlinear limit-point solution.

Definition 4.2. A solution y of (1.1) is said to be of the nonlinear limit-circle type if∫ ∞
0

|y(t)|λ+1dt <∞ , (NLC)

and it is said to be of the nonlinear limit-point type otherwise, i.e., if∫ ∞
0

|y(t)|λ+1dt =∞ . (NLP)

Equation (1.1) will be said to be of the nonlinear limit-circle type if every solution y of
(1.1) satisfies (NLC) and to be of the nonlinear limit-point type if there is at least one
solution y for which (NLP) holds.

The definition of a strong nonlinear limit-point solution was first presented in [5].
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Definition 4.3. A solution y of (1.1) is said to be of the strong nonlinear limit-point type
if ∫ ∞

0

|y(t)|λ+1 dt =∞ and
∫ ∞

0

|y2(t)|δ

R(t)
dt =∞ . (SNLP)

Equation (1.1) is said to be of the strong nonlinear limit-point type if every nontrivial
solution is of the strong nonlinear limit-point type.

The properties defined above are nonlinear generalizations of the well known limit-
point/limit-circle properties introduced by Weyl [15] more than 100 years ago for second
order linear equations. Weyl’s work has generated a great deal of interest over the
last century. The nonlinear limit-point/limit-circle problem originated in the work of
Graef [10,11] and Graef and Spikes [12]. For the history and a survey of what is known
about the linear and nonlinear problems as well as their relationships to other properties
of solutions such as boundedness, oscillation, and convergence to zero, we refer the
reader to the monograph by Bartušek, Došlá, and Graef [1] as well as the recent papers
of Bartušek and Graef [2–7] and others.

Now in the proof of Theorem 4.1, we showed that (4.5) holds. Notice that this does
not prevent y from being a nonlinear limit-circle type solution as defined in Definition
4.2 above. It is also possible that y is a strong nonlinear limit-point type solution (see
Definition 4.3).

Corollary 4.4. (i) Let∫ ∞
0

R′−(t)

R(t)
dt <∞ ,

∫ ∞
0

R−1(t) dt =∞, and
∫ ∞

0

|e(t)| dt <∞ . (4.6)

Then (1.1) is not of the strong nonlinear limit-circle type.
(ii) Let ∫ ∞

0

R′+(t)

R(t)
dt <∞ and

∫ ∞
0

R−1/δ(t)|e(t)| dt <∞ . (4.7)

Then (1.1) is not of the strong nonlinear limit-circle type.

Proof. (i) The first and the third inequalities in (4.6) imply that (4.1) holds. Also,∫ ∞
0

exp

{
−
∫ t

0

R′+(s)

R(s)
ds

}
dt =

∫ ∞
0

exp

{
−
∫ t

0

R′(s)

R(s)
ds−

∫ t

0

R′−(s)

R(s)
ds

}
dt

=

∫ ∞
0

exp

{
−
∫ t

0

R′−(s)

R(s)
ds

}
R(0)

R(t)
dt

≥ exp

{
−
∫ 1

0

R′−(s)

R(s)
ds

}
R(0)

∫ ∞
1

dt

R(t)
=∞ .

Hence, (4.2) holds and the conclusion follows from Theorem 4.1.
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(ii) Now (4.2) follows from the first inequality in (4.7). Since∫ ∞
0

∣∣e(t)∣∣ exp
{ p

p+ 1

∫ t

0

R′−(s)

R(s)
ds
}
dt

=

∫ ∞
0

∣∣e(t)∣∣ exp
{
− p

p+ 1

∫ t

0

R′(s)

R(s)
ds+

p

p+ 1

∫ t

0

R′+(s)

R(s)
ds
}
dt

≤ exp
{ p

p+ 1

∫ ∞
0

R′+(s)

R(s)
ds
}∫ ∞

0

∣∣e(t)∣∣(R(0)

R(t)

)1/δ

dt <∞ ,

we see that (4.1) holds, and the conclusion again follows from Theorem 4.1.

Theorem 4.5. Assume that there is a positive constant K such that∫ ∞
0

rλ+1(t) dt <∞ and
r(t)

a(t)
≤ K (4.8)

for t ∈ R+. In addition, assume that one of the following conditions holds:
(i) ∫ ∞

0

a−1/p(t) dt =∞ and
∫ ∞

0

e(t) dt = ±∞ ;

or
(ii) for t ∈ R+,

R(t) ≤ R0 <∞ , r(t) ≤ r0 <∞ , |e(t)| ≤M <∞, (4.9)

and

−∞ ≤ lim inf
t→∞

∫ t

0

e(s) ds < lim sup
t→∞

∫ t

0

e(s) ds ≤ ∞ . (4.10)

Then no solution of (1.1) is of the strong nonlinear limit-circle type, and so equation
(1.1) is not of the strong nonlinear limit-circle type.

Proof. Let y be a solution of (1.1) and suppose, to the contrary, that it is of the strong
nonlinear limit-circle type. Then Definition 1.2 and the second inequality in (4.8) imply∫ ∞

0

|y(t)|λ+1 dt <∞ and
∫ ∞

0

|y′(t)|p+1 dt <∞ . (4.11)

From this and Sz.-Nagy’s inequality (see [9, Chap. V, Theorem 1]), y is bounded on
R+, say

|y(t)| ≤M1 , t ∈ R+ . (4.12)

Hence, (4.8), (4.11), and Hölder’s inequality imply∫ ∞
0

r(t)|y(t)|λ dt ≤
(∫ ∞

0

|y(t)|λ+1 dt
) λ
λ+1
(∫ ∞

0

rλ+1(t) dt
) 1
λ+1

<∞,
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and we see that ∫ ∞
0

r(t)|y(t)|λ sgn y(t) dt = M2 ∈ R . (4.13)

An integration of (1.1) on [0, t] gives

y[1](t) = y[1](0)−
∫ t

0

r(s)|y(s)|λ sgn y(s) ds+

∫ t

0

e(s) ds . (4.14)

(i) Suppose

∞∫
0

e(t) dt = ∞; the case

∞∫
0

e(t) dt = −∞ can be handled similarly.

Then (4.13)–(4.14) imply
lim
t→∞

y[1](t) =∞ .

Hence, from this and the hypotheses in part (i),

y(t)−y(0) =

∫ t

0

y′(s) ds =

∫ t

0

a−1/p(s)|y[1](s)|1/p sgn y[1](s) ds→∞ as t→∞ .

This contradicts (4.12) and proves part (i).
(ii) Since R(t) ≤ R0, Definition 1.2 implies∫ ∞

0

|y[1](t)|δ dt <∞ . (4.15)

From (1.1), (4.9), and (4.12), we see that(
y[1](t)

)′ is bounded on R+ .

Applying Lemma 2.3 to (4.15) with f = y[1] and m = δ gives

lim
t→∞

y[1](t) = 0 .

Then (4.13) and (4.14) imply lim
t→∞

∫ t

t0

e(s) ds exists, which contradicts (4.10). This

proves part (ii) and completes the proof of the theorem.

The results in this section can be reformulated as giving necessary conditions for
equation (1.1) to have a strong nonlinear limit-circle solution. For example, Theorem
4.1 could be presented as follows.

Theorem 4.6. Assume (4.1) holds. If equation (1.1) has a strong nonlinear limit-circle
solution, then ∫ ∞

0

exp
{
−
∫ t

0

R′+(s)

R(s)
ds
}
dt <∞ .
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5 Applications and Examples
The following application of Lemma 2.2 gives global estimates on solutions of equation
(1.1) and their derivatives.

Theorem 5.1. Let y be a solution of (1.1). Then there are positive constants C and C1

such that

|y(t)| ≤ CR−ω(t)Aq1/(λ+1)(t)

and

|y′(t)| ≤ C1a
− 1
p (t)Rα/(p+1)(t)Aq1/(p+1)(t)

on R+.

The following examples show that Theorems 4.1 and 4.5 are independent of each
other even in case R(t) ≤ R0 <∞.

Example 5.2. Consider a special case of (1.1), namely,

y′′ + t−7(2 + sin t)y3 = sin t , t ≥ 1. (5.1)

Here, p = 1, λ = 3, and a ≡ 1. The hypotheses of Theorem 4.5(ii) are satisfied, so
equation (5.1) is not of the strong nonlinear limit-circle type. Theorem 4.1 cannot be
applied since (4.2) does not hold. To see this, let k0 ∈ {1, 2, . . . } and let {ck}∞k=k0

, and

{dk}∞k=k0
be sequences such that ck ∈

(3π

2
+ 2kπ,

5

3
π + 2kπ

)
, dk ∈

(7

3
π + 2kπ,

5π

2
+

2kπ
)
,

cos t

3
− 7

ck0
≥ 0 on [ck, dk], k = k0, k0 + 1, . . . , and let K =

1

3
− 7π

ck0
> 0. Then,

∫ dk

ck

R′+(t)

R(t)
dt ≥

∫ dk

ck

(cos t

3
− 7

ck0

)
dt ≥ 1

3
− 7

ck0
(dk − ck) ≥

1

3
− 7π

ck0
= K

and ∫ ∞
0

exp
{
−
∫ t

0

R′+(s)

R(s)
ds
}
dt ≤ C +

∞∑
k=k0

exp
{
−

k∑
i=k0

∫ di

ci

R′+(s)

R(s)
ds
}

≤ C +
∞∑

k=k0

exp
{
−K(k − k0)

}
<∞,

where C =

∫ ck0

0

exp
{
−
∫ t

0

R′+(s)

R(s)
ds
}
dt. Thus, (4.2) does not hold.
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The following example shows that strong nonlinear limit-circle solutions may exist

even if R is positive and small and

∞∫
0

e(t) dt exists.

Example 5.3. Consider the equation

y′′ + t−1/4y3 = −t−3/4 sin t− 3

2
t−7/4 cos t+

21

16
t−11/4 sin t+ t−5/2 sin3 t .

We have p = 1, λ = 3, a ≡ 1, and r(t) = t−1/4. This equation has the strong nonlinear

limit-circle solution y(t) = t−3/4 sin t, t ≥ 1. Note that the condition

∞∫
0

rλ+1(t) dt <∞

in Theorem 4.5 is not satisfied. In addition, we see that

∞∫
0

e(t) dt is convergent by [13,

Paragraph 3.761].

We conclude this paper with one final example.

Example 5.4. Consider the equation(
|y′|p−1y′

)′
+ tv|y|λ sgn y = 0. (5.2)

If v ≥ − 1

α
, then (3.2) holds, and so by Theorem 3.1(ii), equation (5.2) is of the strong

nonlinear limit circle type if and only if v >
(λ+ 2)p+ 1

(λ+ 1)p
=

1

β
. If v < − 1

α
, then

Theorem 4.1 implies (5.2) is not of the nonlinear limit-circle type. Hence, in summary,

(5.2) is of the strong nonlinear limit-circle type if and only if v >
1

β
.
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