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Abstract
In this paper, we will prove several new inequalities of Hardy type with ex-

plicit constants. The main results will be proved using generalizations of Opial’s
inequality.
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1 Introduction
The classical Hardy inequality (see [10]) states that for f ≥ 0 integrable over any finite
interval (0, x) and fp integrable and convergent over (0,∞) and p > 1, then∫ ∞

0

(
1

x

∫ x

0

f(t)dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

fp(x)dx. (1.1)
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The constant (p/ (p− 1))p is the best possible. Some extensions of Hardy’s inequality
were considered in Beesack [5].

Our aim in this paper is to prove some inequalities with weighted functions of Hardy
type using Opial type inequalities.

2 Main Results
Throughout the paper, all functions are assumed to be positive and measurable and all
the integrals which appear in the inequalities are assumed to exist and be finite.

To obtain inequalities of Hardy type we look at inequalities for∫ b

a

R(x, b)F (x)F ′(x)dx,

where R(x, b) =

∫ b

x

r(t) dt and F (x) =

∫ x

a

f(t)dt. Each Opial type inequality will

give a Hardy type inequality . We will use a number of Opial type inequalities to illus-
trate this point.

Boyd and Wong [8] proved if p > 0 and if y is an absolutely continuous function
on [a, b] with y(a) = 0 (or y(b) = 0), then∫ b

a

q(t) |y(t)|p |y′(t)| dt ≤ 1

λ0(p+ 1)

∫ b

a

w(t) |y′(t)|p+1
dt, (2.1)

where q and w are nonnegative functions in C1[a, b], and such that the boundary value
problem has a solution

(q(t) (u′(t))
p
)′ = λw′(t)up(t),

with u(a) = 0 and q(b) [u′(b)]p = λw(b)up(b), for which u′ > 0 in [a, b] (let λ0 be the
smallest eigenvalue of the boundary value problem).

Applying the inequality (2.1) on the term (p+1)

∫ b

a

R(x, b)F p(x)F ′(x)dx,we have

(p+ 1)

∫ b

a

R(x, b)F p(x)F ′(x)dx ≤ 1

λ0

∫ b

a

s(t)(F ′(x))p+1dx, (2.2)

where r and s are nonnegative functions, r ∈ C[a, b], s ∈ C1[a, b], and such that the
boundary value problem has a solution

(R(x, b) (u′(x))
p
)′ = λs′(x)up(x), (2.3)

(R(x, b) =

∫ b

x

r(t)dt and note R ∈ C1[a, b] since r ∈ C[a, b]) with u(a) = 0 and

u(b) = 0, for which u′ > 0 in [a, b] (let λ0 be the smallest eigenvalue of the boundary
value problem).
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Theorem 2.1. Assume that r, s are nonnegative functions with r ∈ C[a, b], s ∈ C1[a, b]
and p > 0. Then∫ b

a

r(x)

(∫ x

a

f(t)dt

)p+1

dx ≤ 1

λ0

∫ b

a

s(x) (f(x))p+1 dx,

for all integrable functions f ≥ 0 where λ0 is the smallest eigenvalue of the boundary
value problem (2.3).

Proof. Let F (x) =

∫ x

a

f(t)dt. Since f is integrable on [a, b] then F is absolutely con-

tinuous on [a, b]. Note F (a) = 0, F ′(x) = f(x) > 0 and∫ b

a

r(x)

(∫ x

a

f(t)dt

)p+1

dx =

∫ b

a

r(x)F p+1(x)dx.

Integration by parts gives∫ b

a

r(x)

(∫ x

a

f(t)dt

)p+1

dx = −R(x, b)F p+1(x)
∣∣b
a

+ (p+ 1)

∫ b

a

R(x, b)F p(x)F ′(x)dx

where R(x, b) =

∫ b

x

r(t)dt. Using R(b, b) = 0 and F (a) = 0, we have

∫ b

a

r(x)

(∫ x

a

f(t)dt

)p+1

dx = (p+ 1)

∫ b

a

R(x, b)F p(x)F ′(x)dx. (2.4)

Now (2.2) establishes the result.

Boyd in [7] extended the results of [8]. In [7, Theorem 2.1] the author established
inequalities (best possible constants) of the form∫ b

a

s(t) |y(t)|p |y′(t)|q dt ≤ k

λ0(p+ q)

(∫ b

a

r(t) |y′(t)|k dt
) p+q

k

,

where p > 0, k > 1, 0 ≤ q ≤ k with r, s ∈ C1(a, b) and r > 0, s > 0 a.e. on (a, b);
here λ0 is the smallest eigenvalue of an appropriate boundary value problem (assuming
certain conditions are satisfied; see [7]). With these conditions (with q = 1 and k > 1)
we obtain using the procedure before and in Theorem 2.1∫ b

a

r(x)

(∫ x

a

f(t)dt

)p+1

dx ≤ k

λ0

(∫ b

a

r(t) (f(t))kdt

) p+1
k

,
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where λ0 is the smallest eigenvalue of an appropriate boundary value problem.
Instead of this inequality (and presenting the conditions to guarantee the existence

of λ0) we will consider two special cases of this result, one found in [7] and the other
in [6].

In the following, we apply an inequality due to Boyd [7] and the Hölder inequality.
The Boyd inequality states that: If y is absolutely continuous on [a, b] with y(a) = 0 (or
y(b) = 0), then∫ b

a

|y(t)|ν |y′(t)|η dt ≤ N(ν, η, s)(b− a)ν
(∫ b

a

|y′(t)|s dt
) ν+η

s

, (2.5)

where ν > 0, s > 1, 0 ≤ η < s,

N(ν, η, s) :=
(s− η) ννσν+η−s

(s− 1)(ν + η) (I(ν, η, s))ν
, σ :=

{
ν(s− 1) + (s− η)

(s− 1)(ν + η)

} 1
s

, (2.6)

and

I(ν, η, s) :=

∫ 1

0

{
1 +

s(η − 1)

s− η
t

}−(ν+η+sν)/sν
[1 + (η − 1)t]t1/ν−1dt.

Apply the Hölder inequality and inequality (2.5) to obtain∫ b

a

R(x, b)F p(x)F ′(x)dx ≤
(∫ b

a

Rp(x, b)dx

) 1
p
(∫ b

a

F pq(x) (F ′(x))
q
dx

) 1
q

≤ N
1
q (pq, q, s)(b− a)p

(∫ b

a

Rp(x, b)dx

) 1
p

×
(∫ b

a

(F ′(x))
s
dx

) p+1
s

, (2.7)

where p > 1, 1/p+ 1/q = 1, s > 1 and 1 < q < s; here N(pq, q, s) is determined from
(2.6) by putting ν = pq and η = q.

Theorem 2.2. Assume that r is a nonnegative measurable function on (a, b), p > 1,
s > 1, 1 < q < s and 1/p+ 1/q = 1. Then∫ b

a

r(x)

(∫ x

a

f(t)dt

)p+1

dx ≤ C

(∫ b

a

(f(x))s dx

) p+1
s

,

for all integrable functions f ≥ 0; here

C = (p+ 1)N
1
q (pq, q, s)(b− a)p

(∫ b

a

Rp(x, b)dx

) 1
p

.



Hardy Type Inequalities 5

Proof. The result follows from (2.4) and (2.7).

As in the proof of Theorem 2.1, by putting F (x) =

∫ b

x

f(t)dt, we have the follow-

ing result.

Theorem 2.3. Assume that r is a nonnegative measurable function on (a, b), p > 1,
1 < q < s and 1/p+ 1/q = 1. Then∫ b

a

r(x)

(∫ b

x

f(t)dt

)p+1

dx ≤ C

(∫ b

a

(f(x))s dx

) p+1
s

,

for all integrable functions f ≥ 0; here

C = (p+ 1)N
1
q (pq, q, s)(b− a)p

(∫ b

a

Rp(a, x)dx

) 1
p

and R(a, x) =

∫ x

a

r(t)dt.

When η = s equation (2.5) becomes∫ b

a

|y(t)|ν |y′(t)|η dt ≤ L(ν, η)(b− a)ν
(∫ b

a

|y′(t)|η dt
) ν+η

η

, (2.8)

where

L(ν, η) :=
ηνη

ν + η

(
ν

ν + η

) ν
η

 Γ
(
η+1
η

+ 1
ν

)
Γ
(
η+1
η

)
Γ
(
1
ν

)
ν

, (2.9)

and Γ is the Gamma function. Apply inequality (2.8) to obtain∫ b

a

F pq(x) (F ′(x))
q
dx ≤ L(pq, q)(b− a)pq

(∫ b

a

(F ′(x))
q
dx

) pq+q
q

, (2.10)

where

L(pq, q) =
(pq)q

p+ 1

(
p

p+ 1

)p Γ
(
q+1
q

+ 1
pq

)
Γ
(
q+1
q

)
Γ
(

1
pq

)
 . (2.11)

Using (2.10), we see that∫ b

a

R(x, b)F p(x)F ′(x)dx ≤
(∫ b

a

Rp(x, b)dx

) 1
p
(∫ b

a

F pq(x) (F ′(x))
q
dx

) 1
q

≤ L
1
q (pq, q)(b− a)p

(∫ b

a

Rp(x, b)dx

) 1
p

×
(∫ b

a

(F ′(x))
q
dx

) p+1
q

,

where p > 1 and 1/p+ 1/q = 1. This gives us the following results.
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Theorem 2.4. Assume that r is a nonnegative measurable function on (a, b), p > 1,
q > 1 and 1/p+ 1/q = 1. Then

∫ b

a

r(x)

(∫ x

a

f(t)dt

)p+1

dx ≤ C

(∫ b

a

(f(x))q dx

) p+1
q

,

for all integrable functions f ≥ 0; here

C = (p+ 1)L
1
q (pq, q)(b− a)p

(∫ b

a

Rp(x, b)dx

) 1
p

and L(pq, q) is defined as in (2.11).

Theorem 2.5. Assume that r is a nonnegative measurable function on (a, b), p > 1,
q > 1 and 1/p+ 1/q = 1. Then

∫ b

a

r(x)

(∫ b

x

f(t)dt

)p+1

dx ≤ C

(∫ b

a

(f(x))q dx

) p+1
q

,

for all integrable functions f ≥ 0; here

C = (p+ 1)L
1
q (pq, q)(b− a)p

(∫ b

a

Rp(a, x)dx

) 1
p

and L(pq, q) is defined as in (2.11).

Finally we apply an Opial type inequality due to Beesack [6] to prove inequalities
of Hardy type. The inequality due to Beesack is given in the following theorem.

Theorem 2.6. Let r, s be nonnegative, measurable functions on (α, τ). Further assume
that k > 1, p > 0, 0 < q < k, and let y be absolutely continuous in [α, τ ] such that
y(α) = 0. Then∫ τ

α

r(t) |y(t)|p |y′(t)|q dt ≤ K1(p, q, k)

[∫ τ

α

s(t) |y′(t)|k dt
](p+q)/k

, (2.12)

where

K1(p, q, k) =

(
q

q + p

) q
k

×

(∫ τ

α

(r(y))
k
k−q (s(y))−

q
k−q

(∫ y

a

s
−1
k−1 (t)dt

)p(k−1)/(k−q)
dy

) k−q
k

.
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If instead [α, τ ] is replaced by [τ, β] and y(α) = 0 is replaced by y(β) = 0, then∫ β

τ

r(t) |y(t)|p |y′(t)|q dt ≤ K2(p, q, k)

[∫ β

τ

s(t) |y′(t)|k dt
](p+q)/k

, (2.13)

where

K2(p, q, k) =

(
q

q + p

) q
k

×

(∫ β

τ

(r(y))
k
k−q (s(y))−

q
k−q

(∫ β

y

s
−1
k−1 (t)dt

)p(k−1)/(k−q)
dy

) k−q
k

.

Now, we apply inequality (2.12) and (2.13). For completeness we apply (2.12) with
k > 1 to obtain∫ b

a

R(x, b)F p(x)F ′(x)dx ≤ K1(p, 1, k)

[∫ b

a

s(x)(F ′(x))kdx

](p+1)/k

, (2.14)

where

K1(p, 1, k) =

(
1

1 + p

) 1
k

×
(∫ b

a

(R(x, b))
k
k−1 (s(x))−

1
k−1

(∫ x

a

s
−1
k−1 (t)dt

)p
dx

) k−1
k

. (2.15)

Theorem 2.7. Let p > 0, k > 1 and let r, s be nonnegative measurable functions on
(a, b). Then∫ b

a

r(x)

(∫ x

a

f(t)dt

)p+1

dx ≤ (p+ 1)K1(p, 1, k)

[∫ b

a

s(x)(f(x))kdx

](p+1)/k

,

for all integrable functions f ≥ 0; here K1(p, 1, k) is defined as in (2.15).

Proof. The result follows from (2.4) and (2.14).

The proof of the following theorem can be obtained by applying inequality (2.13)
and hence is omitted.

Theorem 2.8. Let p > 0, k > 1 and let r, s be nonnegative measurable functions on
(a, b). Then∫ b

a

r(x)

(∫ b

x

f(t)dt

)p+1

dx ≤ (p+ 1)K2(p, 1, k)

[∫ b

a

s(x)(f(x))kdx

](p+1)/k

,
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for all integrable functionsf ≥ 0; here

K2(p, 1, k) =

(
1

1 + p

) 1
k

×

(∫ b

a

(R(a, x))
k
k−1 (s(x))−

1
k−1

(∫ b

x

s
−1
k−1 (t)dt

)p
dx

) k−1
k

.
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